
DOLOS
SOURCE CODE SIMILARITY DETECTION

Rien Maertens

Supervisors:
Prof. Dr. Peter Dawyndt
Prof. Dr. Ir. Bart Mesuere

A dissertation submitted to Ghent University in partial fulfilment of the requirements for the degree of
Doctor of Computer Science.

Academic year: 2024 – 2025

Despite giving commentary on the technology, this dissertation made use
of GenAI to improve the writing and style of the text in the form of Mistral
AI s̓ service Le Chat. The model was prompted to improve draft text snippets
for clarity, writing style, and formulations. Actual human intelligence con‐
ducted the conceptualisation, research and programming underpinning this
dissertation.

The cover of this dissertation is designed by Gert Maertens and depicts an
abstract interpretation of a plagiarism graph as astrological signs.

ii

Samenvatting

Door de toenemende digitalisering van onze samenleving doceren
steeds meer opleidingen een vak programmeren. Leren programme‐
ren is echter helemaal niet evident; deze vaardigheid bestaat uit ver‐
schillende bouwstenen die op elkaar voortbouwen. Als een student
slechts één van die bouwblokken niet onder de knie heeft, bijvoor‐
beeld door een gemiste les, is de kans al groot dat die student er niet
in slaagt om een werkende oplossing voor een programmeeropdracht
te maken.

In dergelijke situaties kan druk om goed te presteren, de rationalisatie
om de leerstof later bij te benen, en de opportuniteit om elders een
werkende oplossing te bemachtigen, leiden tot de beslissing van die
student om broncode te plagiëren. Deze vorm van academisch fraude
houdt in dat broncode van een externe bron wordt voorgesteld als
eigenwerk, zonder de originele bron te vermelden.Vaakworden lichte
aanpassingen aangebracht om het plagiaat te verdoezelen.

Omdat deze vormvanplagiaat nefast is voor het leereffect bij de student
en het evaluatieproces ondermijnt, maken sommige lesgevers gebruik
van similariteitsdetectieprogrammas̓. Deze programmas̓ detecteren
overeenkomsten tussen broncode die wijzen op plagiaat. De huidi‐
ge programmas̓ zijn vaak verouderd, onhandig, en voldoen niet aan
moderne privacyverwachtingen. Daarom is het aantal lesgevers die de‐
ze programmas̓ gebruiken, beperkt. Om hieraan tegemoet te komen,
hebben wij een nieuw similariteitsdetectieprogramma ontwikkeld,
genaamd Dolos. Dolos heeft als doel om gelijkenissen tussen bron‐
codebestanden die zijn ingediend voor een programmeeropdracht
snel en efficiënt te detecteren. De resultaten worden getoond in een
gebruiksvriendelijke interface die de zoektocht naar plagiaat verge‐
makkelijkt. Ons doel is om Dolos zo toegankelijk mogelijk te maken
zonder dat de gebruikers inboeten aan flexibiliteit. Dit proefschrift
beschrijft de totstandkoming van Dolos en duikt in de verschillende
aspecten die hierbij aan bod komen.

Hoofdstuk 1 begint met een inleiding over plagiaat van broncode.We
behandelen wat precies wordt bedoeld met deze vorm van plagiaat,
hoe vaak het voorkomt, wat studenten drijft om plagiaat te plegen, en

Dolos is de
godheid van
bedrog en
misleiding in de
Griekse
mythologie.

iii

Samenvatting

welke technieken lesgevers kunnen toepassen om het tegen te gaan.
Daarnaast bespreken we de verschillende vormen van plagiaat van
broncode en de methoden die studenten gebruiken om hun code aan
te passen en zo plagiaat te verdoezelen.

In hoofdstuk 2 gaan we dieper in op hoe we door deze verdoezelingen
heen kunnen kijken om gelijkenissen te detecteren die kunnen wijzen
op plagiaat. We bespreken een selectie van de meest gebruikte simila‐
riteitsdetectietools waaronder Moss, JPlag, Plaggie, SherlockWarwick,
Sherlock Sydney en Compare50.

Daarna beschrijven we het algoritme onder de motorkap van Dolos
in hoofdstuk 3. Dolos zet de onderzochte broncode om in een syntax‐
boom, een systematische voorstelling van de onderliggende structuur
van een programma. Deze syntaxboom is onafhankelijk van witruimte
en namen die programmeurs vrij kunnen kiezen, zaken die gemakke‐
lijk aangepast worden om plagiaat te verhullen. Vervolgens wordt de
syntaxboom omgezet in digitale vingerafdrukken die vergeleken wor‐
den tussen de verschillende broncodebestanden. Deze vingerafdruk‐
ken zijn robuust tegen verdoezelingen die de onderliggende structuur
van broncode aanpassen, zoals het verwisselen van de volgorde van
functies. De resultaten van deze similariteitsanalyse worden geaggre‐
geerd in een digitaal rapport dat alle informatie visueel weergeeft aan
de gebruiker.

Hoofdstuk 4 behandelt het ontwerp en de ontwikkeling van de gebrui‐
kersinterface van Dolos. Hier is veel aandacht besteed aan een goede
gebruikerservaring en toegankelijkheid.We beschrijven de verschil‐
lende visualisaties en hoe deze kunnen worden gebruikt om plagiaat
op te sporen. Dolos houdt de resultaten overzichtelijk door middel
van interactieve paginas̓ die informatie tonen over clusters en indivi‐
duele bestanden, in tegenstelling tot paarsgewijze vergelijkingen die
snel overweldigend worden bij veel plagiaat. Vergeleken met ande‐
re programmas̓ biedt Dolos een uitgebreide gebruikerservaring met
meerdere innovatieve visualisaties.

We beschrijven in hoofdstuk 5 de implementatie van Dolos. Zoals goed
programmaontwerp dicteert, is Dolos verdeeld in verschillende com‐
ponenten, elk met hun eigen verantwoordelijkheid. Deze modulai‐
re softwarearchitectuur biedt veel flexibiliteit en maakt het mogelijk
om verschillende gebruikersgroepen te ondersteunen. De functiona‐
liteiten van Dolos worden gratis aangeboden via een website1, een
online API, een CLI, en in softwarebibliotheken. Één van de belang‐
rijkste kenmerken van Dolos is losse koppeling tussen de algoritmen

1dolos.ugent.be/server

iv

https://dolos.ugent.be/server

en de ondersteuning voor verschillende programmeertalen. Door ge‐
bruik te maken van een bibliotheek die syntaxbomen kan genereren
voor meerdere programmeertalen, ondersteunt Dolos een breed scala
aan programmeertalen en is het eenvoudig om nieuwe talen toe te
voegen. De broncode van Dolos is gratis en publiek beschikbaar op
github.com/dodona‐edu/dolos.

In hoofdstuk 6 vergelijken we Dolos met andere similariteitsdetectie‐
tools op verschillende aspecten.Met gebruiksstatistieken tonenwe aan
dat Dolos steeds vaker opgepikt wordt door diverse gebruikersgroepen.
Middels een aantal benchmarks tonen we dat Dolos qua prestaties,
uitvoeringstijd en geheugengebruik minstens gelijkwaardig is aan, of
beter presteert dan, bestaande alternatieven. Een gebruikersenquête
toont aan dat de gebruikerservaring positief wordt beoordeeld. Ten
slotte beschrijven we hoe Dolos een essentieel onderdeel is geworden
van onze strategie om plagiaat te voorkomen en te bestrijden in onze
eigen cursussen.

Hoofdstuk 7 bespreekt de verschillende experimenten die zijn uitge‐
voerd om Dolos en similaritieitsdetectieprogrammas̓ in het algemeen
te verbeteren. Deze experimenten richten zich voornamelijk op het
evalueren van bestaande tools, het ontwikkelen van verbeterde algorit‐
men voor similariteitsdetectie, en het creëren van betere visualisaties
om plagiaat op te sporen. Hoewel niet alle experimenten succesvol wa‐
ren, hebben hun resultaten onmiskenbaar bijgedragen aan de kwaliteit
en effectiviteit van Dolos.

Tot slot, in hoofdstuk 8, vattenwe alles nog eens samen in een conclusie
en geven we mogelijke verbeterpunten aan Dolos met opportuniteiten
tot verder onderzoek.We bespreken de impact van Dolos, niet alleen in
educatieve contexten,maar ook in andere gebieden zoals cybersecurity
en onderzoek naar artificiële intelligentie. We sluiten dit hoofdstuk en
dit proefschrift af met een kritische blik op de toekomst, met speciale
aandacht voor de uitdagingen die generatieve artificiële intelligentie
met zich meebrengt. Deze ontwikkelingen vragen om aandacht van
studenten, lesgevers en onderzoekers.

v

https://github.com/dodona-edu/dolos

vi

Summary

The increased digitalisation of our society has caused more program‐
ming courses to be embedded in our curricula. However, learning to
code is far from straightforward; this skill comprises various building
blocks that build upon each other. If a studentmisses even one of these
building blocks, for instance, due to an absent lesson, there is already a
substantial chance that the student will fail to create aworking solution
for a programming assignment.

In such situations, the pressure to perform well, the rationalisation to
catch up on thematerial later, and the opportunity to obtain a working
solution elsewhere can lead to a student to decide to plagiarise source
code. This form of academic dishonesty involves presenting source
code from an external source as one s̓ own work without citing the
original source. Students often make minor adjustments to disguise
their plagiarism.

Since this form of plagiarism is detrimental to the student s̓ learning
experience and undermines the evaluation process, some educators
use similarity detection programs. These programs detect similarities
between source codes that indicate plagiarism. Unfortunately, these
programs are often outdated, inconvenient, and do not comply with
modern privacy standards. Because of this, only few educators use
these programs. To address this, we have developed a new similarity
detection program called Dolos. Dolos aims to quickly and effectively
detect similarities between source files submitted for a programming
assignment. The results are displayed in a user‐friendly interface that
facilitates the search for plagiarism. Our goal is to make Dolos as ac‐
cessible as possible without compromising flexibility for the users.
This thesis describes the development of Dolos and explores the vari‐
ous aspects involved.

Chapter 1 begins with an introduction to source code plagiarism. We
explore what exactly this form of plagiarism entails, how frequently it
occurs, what motivates students to commit plagiarism, and the tech‐
niques educators can employ to counteract it. Additionally, we discuss
the various forms of source code plagiarism and the methods students
use to modify their code to disguise plagiarism.

Dolos is named
after the spirit of
trickery and guile
from Greek
mythology.

vii

Summary

In chapter 2, we delve deeper into techniques to see through these
disguises to detect similarities that may indicate plagiarism. We re‐
view a selection of the most commonly used similarity detection tools,
including Moss, JPlag, Plaggie, Sherlock Warwick, Sherlock Sydney,
and Compare50.

Subsequently, in chapter 3, we describe the algorithm underpinning
Dolos. Dolos converts the examined source code into a syntax tree, a
systematic representation of a programs̓ underlying structure. This
syntax tree is independent of whitespace and names that programmers
can freely choose, elements that are easily modified to conceal plagi‐
arism. The syntax tree is then transformed into digital fingerprints,
which are compared across different source files. These fingerprints
are robust against obfuscations that alter the underlying structure of
the source code, such as rearranging the order of functions. Dolos
aggregates the results of this similarity analysis into a digital report
containing all the information needed to visually present it to the
user.

Chapter 4 addresses the design and development of Dolos s̓ user in‐
terface, with a strong emphasis on user experience and accessibility.
We describe the various visualisations and how they can be utilised
to detect plagiarism. Dolos keeps the results organised through in‐
teractive pages that display information about clusters and individual
files, as opposed to pairwise comparisons that can quickly become
overwhelming when dealing with extensive plagiarism. Compared
to other programs, Dolos offers an enhanced user experience with
multiple innovative visualisations.

In chapter 5, we describe the implementation of Dolos. Following good
program design principles, Dolos is divided into several components,
each with its own responsibilities. This modular software architecture
provides great flexibility and enables support for different types of
users. Dolos s̓ functionalities are offered free of charge via a website1,
an online API, a CLI, and software libraries. One of Dolos s̓ key features
is the loose coupling between the algorithms and the support for vari‐
ous programming languages. By utilising a library that can generate
syntax trees for multiple programming languages, Dolos supports a
wide range of languages andmakes it easy to add new ones. The source
code of Dolos is freely available on github.com/dodona‐edu/dolos.

Chapter 6 compares Dolos with other similarity detection tools across
various aspects. Using usage statistics, we demonstrate that Dolos is
increasingly being adopted by diverse types of users. Through several

1dolos.ugent.be/server

viii

https://github.com/dodona-edu/dolos
https://dolos.ugent.be/server

benchmarks, we show that Dolos performs at least as well as, if not
better than, existing alternatives in terms of performance, execution
time, and memory usage. A user survey indicates that the user experi‐
ence is positively rated. Finally, we describe how Dolos has become an
essential component of our strategy to prevent and combat plagiarism
in our own courses.

Chapter 7 discusses the various experiments conducted to improve Do‐
los and similarity detection programs in general. These experiments
primarily focus on evaluating existing tools, developing improved al‐
gorithms for similarity detection, and creating better visualisations to
detect plagiarism. Although not all experiments were successful, their
results have undoubtedly contributed to the quality and effectiveness
of Dolos.

Finally, in chapter 8, we summarise our conclusions and suggest po‐
tential improvements for Dolos, along with opportunities for further
research. We discuss the impact of Dolos, not only in educational
contexts but also in other areas such as cybersecurity and research
on artificial intelligence. We conclude this chapter and thesis with a
critical look into the future, paying special attention to the challenges
posed by generative artificial intelligence. These developments require
the attention of students, educators, and researchers alike.

ix

x

Dankwoord — Acknowledgements

Wanneer een doctoraat wordt afgewerkt, is het vaak die éne kersverse
doctor die in de schijnwerperswordt geplaatst. Ik geloof echter oprecht
dat het de mensen zijn die ons omringen, die ons toelaten om dit
soort verwezenlijkingen te bereiken. Met dit dankwoord draag ik mijn
doctoraat op aan jullie allen: familie, vrienden, collegas̓, kennissen,
en alle andere medewezens waarmee we samenleven.

Wat volgt, is een poging ommijn dankbaarheid in woorden te vatten.
Want zonder de berg aan begeleiding, de oceaan aan steun en de einde‐
loze stroom aan liefde die mij doorheen de jaren werd gegund, was ik
nooit begonnen aan dit avontuur, laat staan dat ik het had volbracht.

De personen die het dichtst bij mijn doctoraat stonden, zijn onge‐
twijfeld mijn promotoren prof. Peter Dawyndt en prof. Bart Mesuere.
Dankjewel om in mij te geloven, vanaf mijn eerste onzekere dagen
als jobstudent tot de laatste punt achter mijn doctoraatsproefschrift.
Jullie deur stond altijd open, en ik kreeg de tijd, de vrijheid en het
vertrouwen ommijzelf uit te dagen als informaticus.

I would also want to thank my examination committee (“the jury”)
to spend their time to critically evaluate this dissertation, give con‐
structive feedback, and grill me with thoughtful questions. Thank you
to prof. Chris Cornelis, prof. Veerle Fack, prof. Christophe Scholli‐
ers, prof. Frederik Gailly, and especially thanks to dr. Ari Korhonen
for coming all the way to Ghent for both the internal and public de‐
fence. It is during these intense evaluations, when knowledge from
different domains collide, that we truly extend the boundaries of our
knowledge.

Ik ben ook ontzettend dankbaar voor alle lesgevers die mij met vuur
en toewijding hebben gevormd: leerkrachten, assistenten, lectoren,
coaches, professoren en sprekers die niet enkel kennis overdroegen,
maar ook de passie en bevlogenheid voor hun vakgebied. Jullie hebben
mij niet alleen opgeleid,maar ook geïnspireerd zelf lesgever te worden.
In diezelfde adem bedank ik ook alle studenten voor hun scherpe vra‐
gen en verwarde blikken; jullie zijn mijn beste leraren die mij telkens
opnieuw uitdagen om iets beter uit te leggen. Dat ene moment waarop

Zelfs de katten die
mij gezegend
hebbenmet hun
kopjes verdienen
een bedanking.

xi

Dankwoord — Acknowledgements

het dan “klikt” is mijn mooiste beloning en herinnert mij eraan dat
onderwijs geen eenrichtingsverkeer is — when one teaches, two learn.
In het bijzonder dank ik de masterproefstudenten en jobstudenten
die hebben meegewerkt aan mijn onderzoek: Arne, Maxiem, Maarten,
Michiel en Raymond.

Het is dankzij het vertrouwen van de vakgroep dat ik als assistent mijn
roeping kon volgen om de volgende generatie informatici mee op weg
te zetten. Het is ook dankzij de fijne collegas̓ binnen én buiten de vak‐
groep dat ik mij er helemaal thuis voel. De UGent is een bijzondere ge‐
meenschap om in terecht te komen en het geeft voldoening om samen
te werken met fantastische onderzoekers, professoren, secretariaats‐
medewerkers, faculteitsraadsleden, studenten, resto‐medewerkers,
enzovoort.

Special thanks to all (ex‐)colleagues for creating this wonderful atmo‐
sphere to work in, and to join on the extracurricular activities, notably
the TWIST/WINST weekends. Alexis, Arne, Asmus, Bart, Benjamin,
Boris, Charlotte, Dieter, Fatemeh, Felix, Francis, Heidi, Inga, Jari,
Jonathan, Jorg, Karel, Linde, Louis, Louise, Maarten, Mustapha, Nico,
Niko, Robbert, Pieter, Simon, Steven, Thijs, Thomas, Tibo, Tom, Toon,
Wannes, andWout, whom I am thankful to count among my friends.

I would also like to thank the wonderful people from Aalto University
in Finland that welcomed me so warmly in their culture. Thank you to
Archie, Artturi, Guido, Jaakko, Juho, Mikael, Otto, and all others that I
had the honour to spend time with in Finland.

Een groep die een grote invloed gehad heeft op mijn studies is de
studentenwerkgroep / hackerspace ZeusWPI. Jullie zijn échtmet teveel
om op te noemen, en elk van jullie brengt eigen, unieke inzichten en
projectjes waar we tot in de vroege uurtjes over kunnen bezig zijn.
Daarom wil ik ook alle oude, huidige, en toekomstige leden van Zeus
bedanken om elkaar te blijven inspireren

Ik mag zeker niet vergeten om enkele oud‐Zeusleden in het bijzonder
te bedanken. Bedankt Feliciaan & Annelieke, Heidi & Felix, Stijn & My‐
rjam, Titouan & Deborah, en Tom voor de inzichtvolle discussies over
alternatieve samenlevingsvormen en om samen diepgaande videore‐
portages te bekijken over de mysteries in de menselijke psyche.

Bedankt ook aan de medestudenten die doorheen mijn opleiding mijn
vrienden voor het leven geworden zijn en met wie ik vele leuke herin‐
neringen heb van LAN‐parties, huwelijken, trektochten, game jams en
D&D‐sessies: Arne & Liesbeth, Jarre, Jorg & Louise, Niko, Nils & Ciel,
Pieter, Sam & Chloë en Sander.

As warm as a
sauna.

xii

Ook met het zooitje ongeregeld van Theater Volta deel ik prachtige
herinneringen die ik koester: Astrid, Bert, Charlotte, Filip, Jan, Jensen,
Lisa, en Louise, bedankt voor jullie artistieke kronkels en wonderbaar‐
lijke apocalypsen.

An unlikely, but magnificent group of friends also deserve a place is
this section: Aline & Sarah, Demi, Elena & Ludwig, Ilya & Galina, and
Sigurd & Elynn, thank you for the epic stories we create together.

Daarnaast heb ik het grootste geluk om in een bijzonder hartelijke
familie te zijn opgegroeid. Bedankt aan mijn fantastische grootouders,
tantes, nonkels, neven, nichten, en ook mijn schoonfamilie, ommij
te omringen met zoveel warmte. In het bijzonder bedankt aan mijn
mama & papa, mijn zussen Marthe & Fauve, en schoonbroers Dereje
& Remi. Dank jullie allemaal voor dit nest vol liefde, gezelligheid en
geduld, waarin ik zorgeloos kon opgroeien tot wie ik ben.

Dan rest mij nog één iemand in het bijzonder om te bedanken, en dat
is mijn beste vriendin, lief, en vrouw Charlotte. Dank je voor al onze
zotte avonturen samen, ik kijk uit naar alles wat we samen nog zullen
beleven.

xiii

xiv

Table of contents

Samenvatting . iii

Summary . vii

Dankwoord — Acknowledgements xi

Table of contents . xv

List of acronyms . xix

List of publications . xxi

1. Educational source code plagiarism 1
1.1. Educational Setting . 2

1.1.1. Formative and summative assessment 2
1.1.2. Programming exercise platforms 3
1.1.3. Cheating . 3

1.2. Source code plagiarism 4
1.2.1. Prevalence of source code plagiarism 5
1.2.2. When does plagiarism occur in programming

assignments? 5
1.3. How students plagiarise 9

1.3.1. Sources for plagiarism 9
1.3.2. Obfuscations: how students evade detection . . 11

1.4. Countermeasures . 14
1.4.1. Plagiarism detection using Source Code Similarity 15

1.5. Goal and structure of this dissertation 16
1.5.1. Research goal 16
1.5.2. Structure of this dissertation 17

2. Related work . 19
2.1. Detecting plagiarism 20
2.2. Plagiarism detection fundamentals 21
2.3. Similarity detection algorithms 22

2.3.1. Greedy String Tiling 23
2.3.2. Winnowing . 23

xv

Table of contents

2.4. Source code similarity detection tools 24
2.4.1. Moss . 26
2.4.2. JPLag . 27
2.4.3. Plaggie . 27
2.4.4. SherlockWarwick 27
2.4.5. Sherlock Sydney 28
2.4.6. Compare50 . 29

3. Algorithmic underpinnings 31
3.1. Tokenisation . 33

3.1.1. Parsing to a syntax tree 33
3.1.2. Serialisation and location mapping 35
3.1.3. Removing comment tokens 36

3.2. Fingerprinting . 37
3.2.1. Hashing tokens 39
3.2.2. Hashing k‐grams 40
3.2.3. Winnowing . 41
3.2.4. Building the fingerprint index 44

3.3. Reporting . 45
3.3.1. Comparing pairs 46
3.3.2. Computing similarity 47
3.3.3. Computing the Longest Common Substring . . . 48
3.3.4. Delayed calculation of fragments 48

4. User Interface and User Experience design 51
4.1. Design methodology 52

4.1.1. Usability Testing 53
4.1.2. Philosophy . 53

4.2. General UI structure 56
4.2.1. Navigation . 56
4.2.2. Metadata . 58
4.2.3. Global settings 58

4.3. Overview . 59
4.3.1. Similarity Histogram 61
4.3.2. Automatic similarity threshold estimation . . . 62

4.4. Plagiarism Graph . 63
4.5. Clusters . 65

4.5.1. Cluster detail 65
4.6. Pairs . 68

4.6.1. Pairwise comparison 69
4.7. Submissions . 72

4.7.1. Submission detail 73
4.8. Evolution of the UI . 73

4.8.1. TUI before v1.0.0 75

xvi

4.8.2. v1.0.0 – A web UI for Dolos 75
4.8.3. v1.6.0 – Clusters and files 78
4.8.4. v2.0.0 – Major UI redesign 80
4.8.5. Further development 80

5. Implementation . 83
5.1. Software architecture 83

5.1.1. Choice for TypeScript 85
5.1.2. Repository structure 86
5.1.3. Continuous Integration and Deployment 86
5.1.4. Software Licence 88

5.2. Parser module . 88
5.2.1. Vendoring parsers 90

5.3. Software libraries . 91
5.3.1. dolos-core 91
5.3.2. dolos-lib . 95

5.4. Command‐line interface 98
5.4.1. CSV‐format . 99
5.4.2. Launching theWeb UI 99

5.5. Web interface . 100
5.5.1. Vue philosophy 100
5.5.2. Report ingestion and initialisation 102
5.5.3. D3 Visualisations 102
5.5.4. The Monaco editor 105
5.5.5. Server mode . 106

5.6. API server . 107
5.6.1. API submission flow 108
5.6.2. External integrations 109

5.7. Additional components 113
5.7.1. Documentation 113
5.7.2. Samples . 115
5.7.3. Containers . 116
5.7.4. Nix flake . 117

6. Evaluation . 119
6.1. Usage metrics . 119
6.2. Benchmarks . 122

6.2.1. Datasets . 122
6.2.2. Method . 125
6.2.3. Results . 126

6.3. Usability and User Experience 134
6.3.1. User Experience Questionnaire 134
6.3.2. Methodology 135
6.3.3. Results . 135

xvii

Table of contents

6.3.4. Limitations . 137
6.4. Case study . 138

6.4.1. Course structure 138
6.4.2. Plagiarism prevention 140
6.4.3. Impact of COVID‐19 pandemic 143
6.4.4. Impact of GenAI 145

7. Experimental prototypes . 151
7.1. Evaluation . 151

7.1.1. Challenges . 152
7.1.2. Dataset annotation and benchmark standardisa‐

tion . 153
7.1.3. Simulated plagiarism dataset 155
7.1.4. Lessons learned 157

7.2. Matching algorithms 157
7.2.1. Tree‐matching 158
7.2.2. Syntax tree preprocessing 158
7.2.3. Suffix trees . 160
7.2.4. Lessons learned 162

7.3. Visualisations . 163
7.3.1. Interestingness metric 163
7.3.2. Semantic analysis 163
7.3.3. Lessons learned 164

8. Conclusions . 167
8.1. Results . 168

8.1.1. Research contributions 169
8.2. Impact . 170

8.2.1. Plagiarism detection in education contexts . . . 171
8.2.2. Detecting plagiarism by LLMs 171
8.2.3. Malware classification 173

8.3. Future work . 174
8.3.1. Multi‐file and multi‐submission analysis 174
8.3.2. Improving the similarity threshold estimate . . 176
8.3.3. Supporting instructors to report plagiarism . . . 177

8.4. Generative AI . 178
8.5. Concluding remarks 180

A. Dolos CLI commands and options 181
A.1. dolos command‐line options 181
A.2. dolos serve command‐line options 181
A.3. dolos run command‐line options 182

Bibliography . 185

xviii

List of acronyms

AI Artificial Intelligence

API Application Programming Interface

AST Abstract Syntax Tree

BYOD Bring‐Your‐Own‐Device

CLI Command‐Line Interface

CS Computer Science

CSS Cascading Style Sheets

CST Concrete Syntax Tree

CSV Comma‐Separated Values

FOSS Free and Open‐Source Software

GenAI Generative Artificial Intelligence

GHCR GitHub Container Registry

GLR Generalised left‐to‐right, rightmost derivation in reverse (parser)

GPL GNU General Public License

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IoC Indicator of Compromise

IP Internet Protocol

xix

List of acronyms

IR Intermediate Representation

JSON JavaScript Object Notation

LCS Longest Common substring

LLM Large Language Model

LMS Learning Management system

LR(1) Canonical left‐to‐right, rightmost derivation in reverse (parser)

LTI Learning Tools Interoperability

MIT Massachusetts Institute of Technology

MLE Machine Learing Engineering

MVC Model‐View‐Controller

MVVM Model‐View‐Viewmodel

OS Operating System

RKR-GST Running Karp‐Rabin Greedy‐String Tiling

SDK Software Development Kit

SFC Single‐File Component

SOCO SOurce Code re‐use

SPA Single‐Page Application

SVG Scalable Vector Graphics

TNR True Negative Rate

TPR True Positive Rate

TUI Terminal User Interface

UEQ User Experience Questionnaire

UI User Interface

URL Uniform Resource Locator

UX User Experience

WASM WebAssembly

xx

List of publications

Included in this dissertation

List of publications directly related to this dissertation and for which
I am the first author. As such, the contents of these publications are
included in this dissertation.

Rien Maertens, Charlotte Van Petegem, Niko Strijbol, Toon Baeyens,
Arne Carla Jacobs, Peter Dawyndt and Bart Mesuere (Mar. 2022).
“Dolos: Language‐agnostic Plagiarism Detection in Source Code”.
In: Journal of Computer Assisted Learning 38.4, pp. 1046–1061. issn:
1365‐2729. doi: 10.1111/jcal.12662.

Rien Maertens, Peter Dawyndt and Bart Mesuere (June 2023). “Dolos
2.0: Towards Seamless Source Code Plagiarism Detection in Online
Learning Environments”. In: Proceedings of the 2023 Conference on
Innovation and Technology in Computer Science Education V. 2. ITiCSE
2023. New York, NY, USA: Association for Computing Machinery,
p. 632. isbn: 979‐8‐4007‐0139‐9. doi: 10.1145/3587103.3594166.

Rien Maertens, Maarten Van Neyghem, Maxiem Geldhof, Charlotte
Van Petegem, Niko Strijbol, Peter Dawyndt and Bart Mesuere (May
2024). “Discovering and Exploring Cases of Educational Source Code
Plagiarism with Dolos”. In: SoftwareX 26, p. 101755. issn: 2352‐7110.
doi: 10.1016/j.softx.2024.101755.

Rien Maertens, Charlotte Van Petegem, Niko Strijbol, Toon Baeyens,
Maarten Van Neyghem, Maxiem Geldhof, Arne Carla Jacobs, Peter
Dawyndt and Bart Mesuere (Oct. 2024). Dolos. Zenodo. doi: 10 .
5281/zenodo.7966722.

Rien Maertens, Peter Dawyndt and Bart Mesuere (June 2025). “Source
Code Plagiarism Detection as a Service with Dolos”. In: Proceedings
of the 30th ACM Conference on Innovation and Technology in Computer
Science Education V. 2. ITiCSE 2025. New York, NY, USA: Association
for Computing Machinery, pp. 729–730. isbn: 979‐8‐4007‐1569‐3. doi:
10.1145/3724389.3731274.

xxi

https://doi.org/10.1111/jcal.12662
https://doi.org/10.1145/3587103.3594166
https://doi.org/10.1016/j.softx.2024.101755
https://doi.org/10.5281/zenodo.7966722
https://doi.org/10.5281/zenodo.7966722
https://doi.org/10.1145/3724389.3731274

List of publications

With Team Dodona

List of publications by Team Dodona for which I am a co‐author.

CharlotteVan Petegem, Louise Deconinck, DieterMourisse, RienMaer‐
tens, Niko Strijbol, Bart Dhoedt, Bram DeWever, Peter Dawyndt and
Bart Mesuere (Mar. 2023). “Pass/Fail Prediction in Programming
Courses”. In: Journal of Educational Computing Research 61.1, pp. 68–
95. issn: 0735‐6331. doi: 10.1177/07356331221085595.

Niko Strijbol, Charlotte Van Petegem, Rien Maertens, Boris Sels, Chris‐
tophe Scholliers, PeterDawyndt andBartMesuere (May2023). “TESTed—
An Educational Testing Framework with Language‐Agnostic Test
Suites for Programming Exercises”. In: SoftwareX 22, p. 101404. issn:
2352‐7110. doi: 10.1016/j.softx.2023.101404.

Charlotte Van Petegem, Peter Dawyndt and Bart Mesuere (June 2023).
“Dodona: Learn to Code with a Virtual Co‐teacher That Supports
Active Learning”. In: Proceedings of the 2023 Conference on Innovation
and Technology in Computer Science Education V. 2. ITiCSE 2023. New
York, NY, USA: Association for Computing Machinery, p. 633. isbn:
979‐8‐4007‐0139‐9. doi: 10.1145/3587103.3594165.

CharlotteVanPetegem,RienMaertens,Niko Strijbol, JorgVanRenterghem,
FelixVander Jeugt, BramDeWever, PeterDawyndt andBartMesuere
(Dec. 2023). “Dodona: Learn to Code with a Virtual Co‐Teacher That
Supports Active Learning”. In: SoftwareX 24, p. 101578. issn: 2352‐
7110. doi: 10.1016/j.softx.2023.101578.

CharlotteVanPetegem,KasperDemeyere, RienMaertens,Niko Strijbol,
BramDeWever, BartMesuere and Peter Dawyndt (Apr. 2024).Mining
Patterns in Syntax Trees to Automate Code Reviews of Student Solutions
for Programming Exercises. doi: 10.48550/arXiv.2405.01579.
arXiv: 2405.01579 [cs].

With TeamUnipept

List of publications by Team Unipept for which I am a co‐author.

FelixVander Jeugt, RienMaertens, Aranka Steyaert, PieterVerschaffelt,
Caroline De Tender, Peter Dawyndt and Bart Mesuere (June 2022).
“UMGAP: The Unipept MetaGenomics Analysis Pipeline”. In: BMC
Genomics 23.1, p. 433. issn: 1471‐2164. doi: 10.1186/s12864-022-
08542-4.

xxii

https://doi.org/10.1177/07356331221085595
https://doi.org/10.1016/j.softx.2023.101404
https://doi.org/10.1145/3587103.3594165
https://doi.org/10.1016/j.softx.2023.101578
https://doi.org/10.48550/arXiv.2405.01579
https://arxiv.org/abs/2405.01579
https://doi.org/10.1186/s12864-022-08542-4
https://doi.org/10.1186/s12864-022-08542-4

Chapter 1.

Educational source code
plagiarism

We find ourselves in a thrilling epoch where technological advance‐
ments unfold at a breathtaking pace. Humans have demonstrated the
capacity to develop vaccines fornovel diseases inunder a year (European
Commission 2021), sustain nuclear fusion (McGrath 2024), and gener‐
ate realistic videos from a single descriptive sentence (OpenAI 2024).
These remarkable strides are underpinned by our ability to program
computational machines. Through meticulous selection of program
instructions, we can task computers with performing intricate biolo‐
gical analyses, simulating interactions between elementary particles,
and construct sophisticated deep learning algorithms that capture the
nuanced relationship between text and images.

However, as potent as programming is, mastering it is far from straight‐
forward (Robins et al. 2003; Simões andQueirós 2020). Confrontedwith
the formidable challenge of learning to program in computer science
courses, students may succumb to the temptation to cheat (Sheard,
Carbone et al. 2003). One form of academic dishonesty in this con‐
text is source code plagiarism (Cosma and Joy 2008), where individuals
submit othersʼ code as their own.

This dissertation addresses this issue by introducing Dolos, a modern
source code similarity detection system. We commence this introduct‐
ory chapter by delineating the educational setting in which source
code plagiarism is observed (section 1.1). Subsequently, section 1.2 de‐
tails the intricacies of source code plagiarism, exploring its definition,
prevalence, and the factors contributing to this form of academic mis‐
conduct. Section 1.3 examines methods students employ to plagiarise,
while section 1.4 discusses potential strategies to mitigate this beha‐
viour. Finally, section 1.5 clarifies the overarching goal and structure
of this dissertation.

1

Chapter 1. Educational source code plagiarism

1.1. Educational Setting

Introductory programming courses adopt a “learning by doing” ap‐
proach, where students acquire programming skills by tackling pro‐
gramming exercises. Each programming exercise comprises an as‐
signment that outlines a problem, which students must address by
coding a solution. These exercises progressively increase in difficulty
throughout the course, touching on more and more programming lan‐
guage concepts and presenting increasingly challenging problems.

To support students in completing numerous programming exercises,
educators leverage automated assessment platforms. These platforms
provide students with immediate feedback on their submissions (Van
Petegem, Dawyndt et al. 2023)

Instructors typically set a deadline for a programming exercise, re‐
quiring students to submit their solutions by a specified date and time.
For smaller exercises, this solution might consist of a single source
file, while larger projects might necessitate multiple source code files.
Automated assessment systems often allow students to submitmultiple
attempts, receiving feedback during both formative and summative
assessments (section 1.1.1).

We will refer to a student s̓ (temporary or attempted) solution for a
programming exercise as a submission. The final submission before
the deadline implicitly represents the studentsʼ solution to the given
exercise.

1.1.1. Formative and summative assessment

The usage of programming assignments can be categorised into two
distinct types:

Formative assessment: These are regular assessments designed to
monitor student learning, with instructors providing feedback to en‐
hance the learning process. Students are often encouraged to collab‐
orate in small groups (Walker 1997; Williams et al. 2003). This form of
assessment is low‐stakes, as it typically carries little to no weight in the
final grade. Regular programming exercises solved during hands‐on
practical sessions are an example of this form of assessment.

Summative assessment: These evaluations assess student learning,
often at the end of a course. Students are typically required to work
independently, where external assistance from instructors or peers
is prohibited. Summative assessments significantly contribute to the

We call it a
solution, but not
all student
solutions
successfully solve
the problem.

2

1.1. Educational Setting

final grade and are thus high‐stakes. Examples include evaluations,
exams, or projects.

1.1.2. Programming exercise platforms

Typically, teachers in programming education organise both formative
and summative assessments using a programming exercise platform.
This platform is a learning management system (LMS) where teachers
canmanage their classroom and course contents. In addition to course
management, a programming exercise platform allows students to
submit their programming solution, evaluate this solution against a
test suite, and receive automated or manual feedback.

The Dodona Platform

Dodona1, is a programming exercise platform developed in 2016 at
Ghent University (Van Petegem, Maertens et al. 2023). The platform fo‐
cuses on qualitative and timely automated feedback towards students.
Dodona employs a strict separation between the platform (managing
courses, students and teachers), the exercises (describing the program‐
ming assignments), and the judges (the testing framework deciding
whether submissions are correct). Both exercises and judges are stored
in version‐controlled repositories. This allows teachers to maintain
ownership over their course content while still being able to share this
content with their students and other teachers through Dodona.

The research on source code similarity detection described in this
dissertation is part of the larger research group around Dodona. Pre‐
vious research by Team Dodona involved a language‐agnostic testing
process for programming exercises (Strijbol et al. 2023), and advanced
techniques supporting manual feedback to speed up the grading pro‐
cess (Van Petegem, Demeyere et al. 2024).

1.1.3. Cheating

Cheating transpires when students attempt to subvert the assessment
to gain an unfair advantage. This behaviour is also referred to as aca‐
demic misconduct or a breach of academic integrity. Dick et al. (2002)
enumerate a non‐exhaustive list of 53 cheating methods, including
plagiarism, bribing staff, data manipulation, and using cheat sheets

1dodona.be

3

https://dodona.be

Chapter 1. Educational source code plagiarism

during exams. Cheating is a critical issue because it not only under‐
mines the student s̓ own learning process (Lupton et al. 2000) but it
also harms society, the profession, the reputation of the academic
instruction, and the value of the degree being pursued (Clarke and
Lancaster 2013; Dick et al. 2002).

What constitutes cheating behaviour varieswidely, and the perceptions
of academicmisconductmaydifferbetween students and staff (Brimble
and Stevenson‐Clarke 2005). One factor influencing the severity of
cheating is the form of assessment. During summative assessments,
instructors rigorously monitor for cheating, as it compromises the
evaluation of a student s̓ acquired skills. The higher stakes in such as‐
sessments may also amplify the temptation to cheat (McCabe, Trevino
et al. 1999). When caught cheating during an exam, students often face
severe consequences, as this is deemed serious misconduct.

In contrast, formative assessments focus on student learning, leading
to a more lenient approach for instructors. In this low‐stakes envir‐
onment, while instructors may monitor some forms of cheating to
safeguard the learning experience of all, the repercussions for mis‐
conduct are typically minimal.

1.2. Source code plagiarism

This dissertation addresses a specific form of plagiarism in program‐
ming courses known as source code plagiarism. Cosma and Joy (2008)
define source code plagiarism as:

Source‐code plagiarism occurs when students reuse source code
authored by someone else, either intentionally or unintention‐
ally, and fail to adequately acknowledge the fact that the par‐
ticular source‐code is not their own.

In practice, however, it remains challenging to distinguish between
harmless code reuse and source code plagiarism. Factors considered
in this distinction are similarity, rules, and intent (Gibson 2009; Simon,
Sheard et al. 2016). One such “grey area” is self‐plagiarism, where a
student reuses their own work previously submitted for other assign‐
ments (Collberg and Kobourov 2005).

Perceptions of what constitutes plagiarism and its severity can vary sig‐
nificantly among students, staff, and cultures (Brimble and Stevenson‐
Clarke 2005; Husain et al. 2017; Sheard, Dick et al. 2002). It is therefore
imperative that institutions and instructors clearly communicate their

4

1.2. Source code plagiarism

definitions and expectations regarding plagiarism (McCabe, Treviño
et al. 2002;Wager 2014).

1.2.1. Prevalence of source code plagiarism

A report from Stanford University, aggregating a decade of academic
misconduct cases, revealed that 37% of these incidents involved com‐
puter science students, despite computer science enrollments consti‐
tuting only 6.5% of the total student population (Roberts 2002). Alam
(2004) found that 35% of students self‐reported plagiarising on pro‐
gramming assignments, identifying this form of assessment as having
the highest prevalence of plagiarism in this study. Similarly, a survey
conducted at a Slovakian university reported that 33% of responding
students admitted copying and modifying source code for at least one
of their classes (Chuda et al. 2012).

Sheard, Dick et al. (2002) investigated academicmisconduct at two Aus‐
tralian universities, finding that 33.6% and 28.2% of computer science
students self‐reported copying and modifying a friends̓ assignment.
Notably, a follow‐up survey conducted a decade later, after the imple‐
mentation of countermeasures, observed a decrease to 21%of students
engaging in such behavior (Sheard and Dick 2011). We discuss some
of these countermeasures in section 1.4.

1.2.2. When does plagiarism occur in programming
assignments?

Understanding the motivation behind certain behaviours is crucial
for their prevention. Consequently, numerous academics have en‐
deavoured to identify the factors contributing to student plagiarism.
In their review on plagiarism in programming assessments, Albluwi
(2019) applies the Fraud Triangle framework to categorise and analyse
research contributions. This model, used in the financial sector to
determine under which circumstances fraud could occur, was initially
described by Cressey (1953), and has since been integrated into official
auditing standards. The model comprises three elements, visualised
in figure 1.1: perceived pressure that necessitates fraud, an opportunity
that the individual perceives to be exploitable, and a rationalisation
that justifies the fraudulent actions as ethical.

Each of these elements has been extensively studied to identify con‐
tributing factors that could mitigate the likelihood of plagiarism.

5

Chapter 1. Educational source code plagiarism

Source code
plagiarism

Opportunity
Assessment design

Instructor vigilance
Solution availability

Pressure
Time pressure
Limited feedback
Programming is hard

Rationalisation
Unclear policy
Minimising plagiarism
Denying educational value

Figure 1.1. Diagram symbolising the three factors in the Fraud Triangle frame‐
work: pressure, opportunity, and rationalisation.

Pressure

The pressure to commit plagiarism encapsulates the reasons or the
needs that drive individuals to consider such actions. Studentswho per‐
ceive a lack of skills to achieve satisfactory grades experience greater
pressure to cheat than those confident in their abilities. This factor
remains the least studied amount the three categories of the Fraud
Triangle (Albluwi 2019).

One hypothesis for this research gap could be widespread perception
that programming is inherently a challenging skill to master (Robins
et al. 2003; Simões and Queirós 2020). Robins (2010) highlights the high
interdependence of knowledge required for programming, wheremiss‐
ing even one seminar can significantly diminish a student s̓ chances
of success. Students corroborate this, citing the cumulative nature
of programming, along with equipment failures and software issues,
as external factors contributing to their struggles in programming
courses (Sheard, Carbone et al. 2003). Additionally, Luxton‐Reilly and
Petersen (2017) observe:

Students with fragile knowledge in any of the areas required
may be unable to produce a working solution, even when they
may know most of the required material.

Fragile knowledge refers to limited or incorrect knowledge that stu‐

6

1.2. Source code plagiarism

dents cannot apply effectively (Perkins andMartin 1985). Consequently,
a single technical issue or missed class can cause a student to fall be‐
hind, leading to a cascade of challenges that hinder their ability to
achieve a passing grade.

Time pressure and high workload are also significant factors contrib‐
uting to cheating (Sheard and Dick 2012). Programming courses often
employ weekly graded assignments, thus allowing students only lim‐
ited time for each task. A rapidly approaching deadline, coupled with
the inability to produce a working solution, can motivate students to
cheat. Some instructors mitigate this pressure by sending an email
close to this deadline reminding students to seek help from them,
rather than from peers (Sheard, Simon et al. 2017).

Studentsmay also feel additional pressure to cheat based on automated
feedback: Kyrilov and Noelle (2015) found that students receiving bin‐
ary feedback (correct or incorrect) plagiarised twice as many exercises
on average compared to those receiving no feedback. They hypothes‐
ise that binary feedback provides insufficient information for novice
programmers to correct their mistakes, potentially demotivating them.
They advocate for more detailed feedback in automated assessment
systems (Kyrilov and Noelle 2016).

Opportunity

The perceived opportunity to cheat successfully without detection sig‐
nificantly contributes to plagiarism. Assignment design plays a pivotal
role in the number of sources a student can plagiarise a solution from.
Ideally, each studentwould receive individualised assignments tailored
to their learning trajectory. However, this approach demands consider‐
able resources from instructors and complicates equitable evaluation.
Consequently, all students in a programming course typically receive
the same assignments, facilitating the sharing of solutions and en‐
abling submissions of othersʼ work, including solutions from previous
semesters.

Even with individualised assignments, students can engage in contract
cheating by having someone else complete the assignment. The advent
of Large Language Models (LLMs) has exacerbated this issue, making
it easier to generate a solutions using Generative Artificial Intelligence
(GenAI).

While accessing a valid solution may be straightforward, submitting
it as one s̓ own without detection is more challenging. Handing in
a plagiarised submissions unaltered carries a high risk of discovery

7

Chapter 1. Educational source code plagiarism

and prosecution. Consequently, students often modify the original
solution to conceal their misconduct, requiring confidence in their
ability to evade plagiarism detection systems. However, finding an
applicable solution andmodifying it still requires less skill than solving
the programming assignment independently. We will discuss how
students plagiarise in section 1.3.

The instructor s̓ attitude towards plagiarism also influences the oppor‐
tunity to cheat. If students perceive that an instructor is indifferent to
cheating, they may be tempted to engage in such behaviour (Chuda
et al. 2012). Unfortunately, only aminority of instructors actively check
for plagiarism (Chuda et al. 2012; Lancaster and Culwin 2004; Simon
and Sheard 2016), with some even ignoring it when discovered (Coren
2011). Instructors often cite insufficient time as a reason for overlook‐
ing plagiarism, as addressing it requires constant vigilance, careful
examination of suspected cases, and thorough documentation of evid‐
ence (Coren 2011).

Rationalisation

Individuals rarely perceive their own actions as wrong. Those who
plagiarise often rationalise their behaviour as acceptable. A signi‐
ficant motivation might be the genuine belief that their actions are
permissible. Even among instructors, there is disagreement about
what constitutes cheating or how it should be penalised, if at all. Con‐
sequently, it is unsurprising that students are often unclear about the
boundaries. It is the instructor s̓ and the institutions̓ responsibility
to provide a clear policy that explicitly and unambiguously defines
acceptable and unacceptable behaviour.

Even with a clear policy, students can be remarkably creative in ra‐
tionalising plagiarism. In source code plagiarism, a student might
believe it is acceptable to submit a modified solution as long as they
understand the programs̓ functionality (Simon, B. Cook et al. 2014).
Other rationalisations include minimising the extent of plagiarism (“It
was only a few lines” or “I only used it as inspiration”) and denying
the educational value (“I donʼt need this course”, “Professionals do this
all the time”) (Chuda et al. 2012; Dick et al. 2002; Simon, B. Cook et al.
2013, 2014).

While a policy can objectively define the rules, it is not a foolproof
countermeasure. Researches argue that the most effective way to ad‐
dress the rationalisation of plagiarism is to promote academic integrity
among students. Sheard and Dick (2012) found that emphasising per‐
sonal integrity could reduce plagiarism.

8

1.3. How students plagiarise

1.3. How students plagiarise

Plagiarismof source code is inherentlymulti‐faceted, involving diverse
sources and various techniques to conceal the misconduct, depending
on the origin of the plagiarised material. The approach to detecting
plagiarism hinges significantly on the source and methods employed
to obscure it, with certain forms of source code plagiarism proving
more challenging to identify than others.

The original solution a student plagiarises does not necessarily need
to be correct. Students may assume that submitting a flawed solution
will yield better grades than submitting nothing at all. Additionally,
students might introduce errors themselves to correct solutions, either
inadvertently while attempting to obfuscate the code but failing to pre‐
serve its functionality, or intentionally, under the belief that instructors
may only scrutinise correct submissions for plagiarism.

1.3.1. Sources for plagiarism

To commit plagiarism, a student must access an existing solution for
the given programming assignment. The sources of the original source
code can be categorised as follows:

Students in the same course

A common form of plagiarism involves using the source code of an‐
other student in the same course. Students may request solutions from
peers or share their submissions openly. Additionally, students might
divide programming exercises among themselves, solving only their
share and sharing the results to reduce effort.

Instructors grading final submissions are likely to notice identical
submissions, prompting students to apply obfuscations to differentiate
their derivative copies from the original. Wediscuss these obfuscations
in section 1.3.2.

Collusion

A related yet distinct form of plagiarism occurs when students collabor‐
ate without official approval and submit the results as individual work,
often termed collusion (Jones et al. 2008). This can easily transpire

9

Chapter 1. Educational source code plagiarism

when students work together during formative assessments. Each col‐
laborating student might apply obfuscations to make their submission
appear distinct, but the final results will remain highly similar.

Submissions from previous sessions

Many instructors reuse the same assignments acrossmultiple offerings
of a course (Gehringer 2004), creating an opportunity for students to
submit solutions from previous sessions. Students may access these
solutions frompeers who have already taken the course, those retaking
it, or from online postings. This can even include reference solutions
provided by the instructor in previous sessions.

Themselves

When a student submits code from previously submitted work, either
from another course or a previous session when retaking the course,
this practice is known as self‐plagiarism (Collberg and Kobourov 2005).
Self‐plagiarism is a contentious issue; not all instructors consider it
academic misconduct, and some even view it a good practice (Simon,
Sheard et al. 2016). Moreover, students consider self‐plagiarism the
most acceptable form of cheating (Joy, Cosma et al. 2011).

External sources

A significant source of plagiarism is external sources, both online
(discussion boards, online encyclopedias, source code repositories) or
offline (textbooks). In introductory programming courses, instructors
often use well‐known exercises with numerous applicable solutions
available online. For example, mergesort, a popular sorting algorithm
that most computer science students will program at least once as part
of an assignment, yields over 7 000 repositories on GitHub, providing
ample sources for plagiarism.

This form of plagiarism can be challenging, as not all available solu‐
tions are of sufficient quality, and students must modify them to fit the
current assignment. Instructors can design assignments to increase
the difficulty of incorporating existing solutions (Simon 2017).

10

1.3. How students plagiarise

Contract cheating

Another manifestation of plagiarism is contract cheating, wherein
a student engages someone else to complete the assignment, often
for compensation (Clarke and Lancaster 2006, 2013). Specialised sites
exist to offer and bid on services to outsource solving the program‐
ming assignments at hand (DʼSouza et al. 2007). The solution handed
in is in this case an original and unique solution, unless the contractor
themselves plagiarised their solution. However, the author of the pro‐
gram is not the student tasked with the assignment. Luckily, this is
one of the least practiced forms of plagiarism (Brimble and Stevenson‐
Clarke 2005) and generally considered unacceptable by students (Si‐
mon, Sheard et al. 2016).

Generative AI

The recent rise of GenAI, particularly LLMs, has democratised a prac‐
tice similar to contract cheating by enabling the generation of program‐
ming assignment solutions free of charge. The accessibility of GenAI
has led to a consensus that it is “unbannable” (Prather, Leinonen et al.
2025). Consequently, only a minority of educators explicitly disallow
GenAI, with some purposefully integrating it into their courses.

Most students (95%) consider generating a solution with GenAI and
submitting it without understanding to be unethical. A smaller ma‐
jority (60%) also believe that understanding the solution is insuffi‐
cient (Prather, Denny et al. 2023). Initial research suggests that GenAI
is increasing the prevalence of plagiarism in programming assign‐
ments and shifting the method of plagiarism towards GenAI (B. Chen
et al. 2024).

1.3.2. Obfuscations: how students evade detection

Students engaging in source code plagiarism often modify the ori‐
ginal source using obfuscations to disguise their academic miscon‐
duct (Faidhi and Robinson 1987). Novak et al. (2019) identified 16
distinct obfuscation methods, categorised into four groups: lexical
changes, structural changes, advanced structural changes, and logical
changes. These methods are arranged according to a “pyramid of pro‐
grammodification levels” (G. Chen et al. 2011), reflecting increasing
complexity and impact on the original source code.

11

Chapter 1. Educational source code plagiarism

The rationale behind this ordering is that students resorting to plagiar‐
ism will mostly do so due to fragile knowledge; they lack the skills to
complete the programming assignment successfully. Consequently,
they apply modifications within their capabilities. Adding comments
to a program, for instance, is less challenging than rewriting a for‐
loop into a while‐loop.

While it is always possible to transformone code fragment into another
using these obfuscations, the ability to do so does not necessarily
imply plagiarism. However, if two programs differ only by minor, low‐
complexity changes, this may strongly indicate plagiarism, warranting
further inspection.

We will discuss the 16 obfuscations across four categories:

Lexical changes

Lexical changes require minimal knowledge of the programming lan‐
guage and can be rapidly applied using basic text editor functionalities
like search and replace. Thesemodifications do not alter the programs̓
structure.

• OM_01_L: Visual code formatting involves adding whitespace
such as newlines, spaces, and indentation.

• OM_02_L: Comments modification includes adding, removing,
or altering comments.

• OM_03_L: Translation of program parts entails translating sec‐
tions of the program from one natural language to another.

• OM_04_L: Modifying program output involves changes to the
programs̓ output, including alterations to a Graphical User In‐
terface (GUI).

• OM_05_L: Identifier rename includes changing identifiers such
as variable names, class names, or function names.

• OM_06_L: Changing constant values involves altering constants
like numbers or strings.

12

1.3. How students plagiarise

Structural changes

Structural changes require a basic understanding of the programming
language and involve modifying one or two lines of code.

• OM_07_S: Reordering independent lines of code alters the exe‐
cution order of program statements but necessitates identifying
which lines can be safely reordered without affecting program
semantics.

• OM_08_S: Adding redundant lines of code involves inserting
statements that do not meaningfully influence the programs̓
result, such as adding print statements or assigning a variable to
itself.

• OM_09_S: Splitting up lines of code modifies a program state‐
ment by splitting it into two distinct statements, such as trans‐
forming a return statement with an expression into storing the
expressions̓ result in a variable and returning that variable.

• OM_10_S:Merging lines of code is the inverse of splitting lines
of code, such as combining a variable assignment with its declar‐
ation.

Advanced structural changes

Advanced structural changes demand a deeper understanding of the
programming language and typically involve modifications to multiple
lines of code. These changes require careful consideration of program
flow to maintain functionality. Many modern integrated development
environments (IDEs) offer automated refactoring tools to facilitate
these modifications.

• OM_11_AS: Changing statement specification involves altering
operations in expressions, such as transforming x != y to !(x
== y), and modifying data types or modifiers.

• OM_12_AS: Replacing control structures with equivalents such
as converting a while loop into a for loop.

Logical changes

Logical changes are the most drastic changes, requiring thorough un‐
derstanding of both the programming language and the code fragment.

13

Chapter 1. Educational source code plagiarism

They are themost complex obfuscation to apply, but also themost chal‐
lenging to detect, as the resulting program significantly differs from
the original.

• OM_13_LG: Simplifying the code involves removing no‐essential
statements and functions or even essential parts that the student
does not understand and thus prefers not to submit.

• OM_14_LG: Translation from another programming language is
an obfuscation often applied when plagiarising from an external
source where the desired program is unavailable in the required
programming language.

• OM_15_LG: Changing the logic is the most complex obfuscation,
as it requires the skill to modify the original code to meet the
studentsʼ specific needs. This occurs when the original program
does not fully address the task at hand.

• OM_16_LG: Combining copied and original code includes integ‐
rating parts of another submission into a program where the
student is the original author. When a student attempts to create
a program, but struggles with certain parts, they may plagiarise
only the sections needed to complete their own work.

1.4. Countermeasures

Having established the nature of source code plagiarism, the motiv‐
ations behind it, and the methods employed, we can now explore
strategies to mitigate this issue. We summarise effective approaches
reported by Albluwi (2019) and Sheard, Simon et al. (2017):

Most countermeasures aim to diminish the perceived opportunity to
cheat. As an initial approach, instructors can vary assignments to elim‐
inate the possibility of handing in previous solutions. Assignments
can be varied across semesters or even randomised or personalised for
each student. Secondly, interviewing students as part of the grading
process or evaluating their understanding of the assignment might
reveal discrepancies between the student s̓ understanding and their
submitted solution. A third approach centres on detection, either
by monitoring contact cheating websites for relevant requests or ob‐
serving student progress for suspicious behaviour. Employing plagi‐
arism detection tools, and informing students about their use is also
deemed effective. This strategy can be enhanced by maintaining a

14

1.4. Countermeasures

database of previous submissions and including them in the plagiar‐
ism detection analysis. Finally, raising awareness of the consequences
of cheating, if they are sufficiently severe, could deter students from
cheating.

To reduce rationalisation, educating students about ethics and aca‐
demic integrity is paramount. Requiring students to explicitly commit
to academic integrity policies and clearly communicating what is per‐
missible can reinforce this education. It is also beneficial to focus on
positive alternatives: teaching students when and how to cite code,
motivating them with engaging assignments, providing sufficient re‐
sources and tools to complete assignments, and building relationships
with students can further reduce rationalisation.

To alleviate pressure, lowering the stakes of assessments and ensuring
adequate support, especially around deadlines, can be beneficial. In‐
stead of offering only binary automated feedback, instructors should
strive to provide actionable feedback equips students with the right
tools to improve their solution.

Additionally, Albluwi (2019) presents a list of questions to aid instruct‐
ors in assessing the risk of plagiarism in their course. Using this list and
the strategies listed above, instructors can compliment their course
with a suitable plagiarism detection and prevention strategy.

1.4.1. Plagiarism detection using Source Code Similarity

Plagiarism detection in source code involves identifying plagiarised
source code despite various obfuscation modifications (Novak et al.
2019). Tools facilitate this process by measuring source code similarity
between programs and flagging suspicious similarities. Instructors
use these findings as clues when identifying plagiarism.

Tools for detecting similarity have been available for nearly 50 years (Ot‐
tenstein 1976), yet their adoption remains limited. Culwin et al. (2001)
reported that only 26%of computer science instructors inhigher educa‐
tion in the United Kingdom used plagiarism detection tools. Similarly,
just 8% of Slovakian computer science instructors surveyed by Chuda
et al. (2012) mentioned using such software.

For these tools to serve as effective deterrents, students must be aware
that instructors use them and act on their results. Demonstrating
the capabilities of a similarity detection tool is a powerful prevention
method.

15

Chapter 1. Educational source code plagiarism

We will focus more in‐depth onto the various types of tools, their un‐
derlying fundamentals, and popular tools in use today in chapter 2.

1.5. Goal and structure of this dissertation

Source code plagiarism is a recognised problem (section 1.1.3) with
significant prevalence (section 1.2.1). A robust strategy to mitigate
plagiarism involves using source code similarity detection tools (sec‐
tion 1.4). However, instructors often find the process of plagiarism
detection and prosecution arduous, leading to an under‐utilisation
of these tools (Coren 2011). Contemporary similarity detection tools
face numerous challenges (Albluwi 2019; Novak et al. 2019). Albluwi
(2019) andWeber‐Wulff (2019) highlight several issues with existing
tools. Team Dodonas̓ 2019 search for viable similarity detection tools
revealed that current tools suffer from one or more of the following
shortcomings:

• Inadequate similarity detection.

• Limited programming language support with no straightforward
way to add new languages.

• Poor user interface (UI) and user experience (UX) design.

• Minimal or no visualisations.

• Installation difficulties.

• Unavailable source code.

• Poor source code quality and deprecated dependencies.

• Incompatible with privacy regulations such as GDPR.

• Security concerns.

1.5.1. Research goal

To address this gap, we embarked on developing a source code simil‐
arity detection tool that resolves all these issues. Specifically, we aim
to create an open‐source similarity detection tool with the following
features:

• Proven, high‐quality algorithms for similarity detection.

16

1.5. Goal and structure of this dissertation

• Language‐agnostic with broad programming language support
and easy extensibility.

• Excellent UI and UX

• Visualisations that assist educators in preventing and detecting
plagiarism in various settings (formative and summative assess‐
ment).

• Easy to use and install.

• Open‐source and flexible to accommodate diverse use cases.

• Good software design, well‐maintained and up to date depend‐
encies.

• Respecting teacher and student privacy and compliant with pri‐
vacy regulations.

• Conforming to modern security standards.

Our efforts resulted in Dolos2, a new source code similarity detection
ecosystem.

1.5.2. Structure of this dissertation

This dissertation describes the algorithms, design, and implementa‐
tion behind Dolos.

Chapter 2 provides context by exploring techniques, algorithms, and
tools related to source code plagiarism detection.

Chapter 3 discusses the algorithmic foundations of Dolos, explaining
its similarity detection pipeline step by step.

Chapter 4 presents the rationale behind Dolos s̓ UI and UX, highlighting
its main features and evolution.

Chapter 5 provides implementation details, including software com‐
ponents and user interactions.

Chapter 6 demonstrates Dolos s̓ effectiveness using metrics, bench‐
marks, questionnaire results, and a case study on its use in teaching
programming courses.

Chapter 7 highlights experiments conducted to enhance Dolos.

2dolos.ugent.be

17

https://dolos.ugent.be

Chapter 1. Educational source code plagiarism

Finally, chapter 8 concludes the dissertation by summarising results,
assessing Dolos s̓ impact, and suggesting avenues for further improve‐
ment.

18

Chapter 2.

Related work

This chapter extends the related work section of our journal article “Dolos:
Language‐agnostic plagiarism detection in source code” (Maertens, Van
Petegem, Strijbol, Baeyens, Jacobs et al. 2022). My contributions to this
section include conducting the literature study andwriting the original draft.
I have modified the original text to align with the style and structure of this
dissertation. Furthermore, I have updated certain sections to incorprorate
the latest advancements and insights.

One of the earliest documented attempts to detect plagiarism in pro‐
gramming courses is attributed to Ottenstein (1976). Leveraging the
observation by Bulut and Halstead (1973) that the likelihood of two
programs sharing identical constellations of unique operators, oper‐
ands and their total counts is exceedingly low, Ottenstein employed a
program to count these four properties of FORTRAN programs. These
4‐tuples served as fingerprints, with programs exhibiting identical
4‐tuples flagged as potential plagiarism candidates warranting visual
inspection. While this pioneering approach still encapsulates the es‐
sence of contemporary source code plagiarism detection, the field has
involved significantly since then.

This chapter provides anoverviewof the relevant properties, algorithms
and tools in plagiarism detection for programming assignments. We
begin with a broad examination of plagiarism types and how tools
can aid in detection (section 2.1). We then explore commonalities
among plagiarism detection tools (section 2.2) and briefly discuss the
algorithms they employ (section 2.3). Following this, we present a
selection of popular tools that facilitate source code plagiarism detec‐
tion (section 2.4). Later in this dissertation (chapter 6) we evaluate
our similarity detection tool, Dolos, with some of the tools described
herein.

19

Chapter 2. Related work

2.1. Detecting plagiarism

Recognizing that students may plagiarise from different sources, and
often attempt to disguise this, academics and industry professionals
have devised numerous methodologies and identify suspicious sub‐
missions. Based on the type of plagiarism, these tools utilise diverse
techniques, metrics, and algorithms.

This dissertation specifically addresses detecting similarities within
a closed document space: all solutions submitted for a single assign‐
ment. This primarily targets instances where a student copies a solu‐
tion from another student in the same class. Students may attempt to
disguise their plagiarism through modifying the original source code
by applying superficial obfuscations. Source code plagiarism detec‐
tion tools tackling this issue will attempt to group similar programs
for further manual inspection.

When code is plagiarised from an external source, the original source
is absent from the collection of submissions under analysis. This
includes copying existing solutions from the internet or from previous
offerings. Detecting this form of plagiarism necessitates identifying
similarities between a single solution against a vast, ever‐expanding
corpus, akin to the functioning of internet search engines (Brin et al.
1995).

Another manifestation of plagiarism is contract cheating, wherein a
student engages someone else to complete the assignment, often for
compensation. Detecting this form of plagiarism is challenging, as
the solution itself is original, but the submitting student is not the true
author. Authorship attribution (Bogomolov et al. 2021), a method to
determine the author of a source code fragment, offers a potential
approach to identify this form of plagiarism.

The recent surge in Generative Artificial Intelligence (GenAI), par‐
ticularly Large Language Models (LLMs), has democratised contract
cheating by offering the ability to generate solutions for programming
assignments free‐of‐charge. While rudimentary attempts exist to de‐
tect GenAI‐generated code using metrics like perplexity and bursti‐
ness (Nguyen et al. 2024; Z. Xu and Sheng 2024), these approaches
struggle to accurately discern authorship between humans and arti‐
ficial intelligence (AI) (Pan et al. 2024). Other attempts focusing on
educational contexts try to detect certain “tells” of AI programming as‐
sistants such as a highnumber of verbose comments andprogramming
speed Strozanski (2024), but still remain in the prototype phase.

20

2.2. Plagiarism detection fundamentals

Some methods of plagiarism detection shift the focus from analysing
final submission source code to examining student behaviour. This
approach has been applied to individual student submission patterns
(Hellas et al. 2017; Tahaei and Noelle 2018), or by identifying aberrant
response patters across all students (Alexandron et al. 2017) to detect
suspicious interactions between multiple accounts.

2.2. Plagiarism detection fundamentals

The techniques and tools discussed in this chapter aim to support
instructors in detecting and preventing plagiarism. However, determ‐
ining plagiarism itself should not be reliant on automated tools, given
the potentially severe implications. Therefore, algorithms designed
to aid this process focus on identifying similarities in various forms.
Although commonly referred to as plagiarism detection tools, we em‐
phasise the use of the term similarity detection tools to reflect their true
function.

In this dissertation, we focus on similarity detection in a closed mono‐
lingual collection of source files submitted as solutions for program‐
ming assignments. The collection contains both the source files under
scrutiny for plagiarism and the source files they could have originated
from (closed collection). All source files in the collection use the same
programming language (monolingual collection). Typically, student
submissions comprise tens or hundreds of lines of code, of varying
code quality. We expect some source files to contain syntactical errors,
but still want to detect plagiarism in those faulty submissions.

Prior to examining state‐of‐the‐art software tools for detecting source
code plagiarism in educational settings, we discuss the general work‐
flow for plagiarism detection in practice and explore key concepts.
The process commences with the aggregation, preparation and man‐
agement of source file collections and their associated metadata such
as submission timestamps and additional student information, which
will serve as input for plagiarism detection tools. This preparatory pro‐
cess involves file manipulations like filtering, formatting, arranging
and packaging files in the expected structure. For tools expecting a
single file per submission, files frommulti‐file projects must be con‐
catenated. For tools that are only able to analyse one programming
language per analysis, files must be grouped per programming lan‐
guage. These preliminary datawrangling steps can be time‐consuming
if not adequately supported by online learning environments or cus‐
tom scripts (Sheahen and Joyner 2016). Regrettably, leading source

21

Chapter 2. Related work

code plagiarism similarity tools lack robust interoperability with ex‐
ternal software platforms, offering only non‐standard command‐line
interfaces (CLIs).

2.3. Similarity detection algorithms

Similarity detection tools primarily offer rapid algorithms to identify
similarities among source files and assist reviewers in determining
whether these similarities indicate plagiarism or are merely coincid‐
ental. Although extensive research has been conducted on the al‐
gorithmic aspects of screening source code for similar fragments (Roy
et al. 2009), contemporary leading tools uniformly employ a two‐step
approach, albeit with varying implementation details. The first step
transforms each source file into a list of tokens to mask local obfusca‐
tions. Tokens represent structural elements in the source code, such
as keywords, variables, or operators. Tokenization utilises software
components typically found in the front end of a compiler: a lexer
for lexical analysis, a parser for syntax analysis, and a semantic ana‐
lyser (Aho et al. 2006). The token stream captures the source code s̓
structural elements and excludes whitespace. Literal values, identifier
names or comments are denoted as anonymous syntactic constructs.
The second step involves searches for similar code fragments by per‐
forming pairwise alignment on the token list of each submission pair
to account for more global obfuscations, such as insertions, deletions,
substitutions and transpositions (Wise 1993).

Contemporary similarity detection tools predominantly employ one of
two algorithms to detect similarities between source code: Winnowing,
or Running Karp‐Rabin Greedy‐String Tiling (RKR-GST).While some
alternative techniques have shown promising initial results, they have
not advanced beyond the proof‐of‐concept stage to yield practical tools
that validate the authorsʼ conclusions. Novak et al. (2019) have put it
this way:

In spite of the large production of tools in recent years, most of
the tools are not available to the public, they are used only by
the authors that developed them and are mentioned in only one
article.

Alternative techniques for source code similarity detection include
tree‐based algorithms (Li and Zhong 2010; Zhao et al. 2015), graph‐
based algorithms (Chae et al. 2013; Liu et al. 2006) Latent Semantic Ana‐
lysis information retrieval (Cosma and Joy 2012), fuzzy‐based match‐

22

2.3. Similarity detection algorithms

ing (Acampora and Cosma 2015), program logic analysis (Cheers et al.
2019), and program behavioural analysis (Cheers et al. 2021).

2.3.1. Greedy String Tiling

The RKR-GST algorithm, introduced byWise (1993), is used by similarity
detection tool such as JPlag (section 2.4.2) and Plaggie (section 2.4.3).
The Greedy String Tiling algorithm iteratively searches for matches
between two token streams T1, T2 with a minimummatch size s using
the following high‐level steps:

1. Start with all tokens unmarked.

2. Identify the longest match between unmarked tokens in T1 and
T2.

3. Mark all tokens in this longest match.

4. Repeat steps 2 and 3 until no further matches of at least length s
can be found.

The RKR-GST algorithm extends Greedy String Tiling by leveraging
rolling Karp‐Rabin hashes to quickly identify maximal matches (Karp
and Rabin 1987), while applying additional optimisations to expedite
the average‐case matching process.

Wise (1993) demonstrates that the worst‐case time complexity of RKR-
GST isO(m3) for comparing two token sequences comprisingm tokens
in total. However, an informal estimate suggests that the practical
complexity lies betweenO(m) andO(m2). This complexity pertains
to the comparison of two token sequences; consequently, computing
all pairwise comparisons among n files results in a worst‐case time
complexity ofO(n2m3).

2.3.2. Winnowing

Moss (section 2.4.1), Compare50 (section 2.4.6), and Dolos use the
Winnowing algorithm introduced by Schleimer et al. (2003) to derive
fingerprints from hashed syntax tokens of submissions. Matching
fingerprints between program submissions suggest similarities that
may indicate plagiarism. Given that theWinnowing algorithm is used
by Dolos, which is presented in this dissertation, we provide a detailed
exposition of the algorithm in chapter 3.

23

Chapter 2. Related work

2.4. Source code similarity detection tools

The landscape of source code plagiarism detection tools is fragmen‐
ted, having evolved organically from in‐house scripts to published
tools. There is no standardised format for reporting similarity ana‐
lysis results, although all tools compute a similarity score from each
pairwise alignment of source files and present a filtered or sorted
list of these scores. Pairwise similarities are expressed either as val‐
ues between 0 and 1 or as percentages, with higher scores indicating
a higher likelihood of plagiarism. However, the different similarity
measures used by different tools hinder direct comparison. Some tools
offer functionalities to inspect high‐similarity pairs or cluster source
files into larger groups based on similarity. Unfortunately, support for
advanced plagiarism exploration is generally lacking, and some tools
do not even output analysis results in a machine‐readable format for
further processing.

Novak et al. (2019) identified 120 tools for source code similarity de‐
tection in the scientific literature, but most have never been pub‐
licly available or are no longer accessible. In section 6.2 we com‐
pare Dolos against the leading tools identified by Novak et al. (2019):
Moss (Schleimer et al. 2003), JPlag (Prechelt et al. 2002), Plaggie (Ah‐
tiainen et al. 2006), SherlockWarwick (Joy and Luck 1999), Sherlock
Sydney, and Compare50. Table 2.1 summarises the relevant properties
of these tools.

Before we explore the inner workings, advantages and disadvantages
of these tools, it is essential to clarify a potential source of confusion.
In the realm of source code similarity detection, two distinct tools
share the name “Sherlock”, yet only one is accompanied by a public‐
ation. Despite being developed in different programming languages
and at different universities, there is evidence suggesting that some
publications have inadvertently referenced one tool while utilising
the other. To mitigate this confusion, we include both tools in our
discussion and will consistently refer to them with their respective
university suffixes throughout this manuscript: SherlockWarwick and
Sherlock Sydney.

In addition to free‐to‐use similarity detection tools found in literature,
there are also commercial platforms offering source code plagiarism
detection services. Examples include Codequiry1, Copyleaks2, and Gra‐

1codequiry.com
2copyleaks.com/code‐plagiarism‐checker

24

https://codequiry.com
https://copyleaks.com/code-plagiarism-checker

2.4. Source code similarity detection tools

Table 2.1. Properties of similarity detection tools benchmarked in this study.

Dolos Moss JPlag Plaggie Sherlock
Warwick

Sherlock
Sydney Compare50

Initial release 2020 1997 2001 2002 1999 2011 2017
Active Devel‐
opment Yes No Yes No No No Yes

Pairwise In‐
spection Yes Yes Yes Yes Unknown No Yes

Visualisations Yes No Yes No Yes No Yes
Open‐source Yes No Yes Yes Yes Yes Yes
Local execu‐
tion Yes No Yes Yes Yes Yes Yes

Web server Yes Yes No No No No No
Self‐hostable
web server Yes No No No No No No

Programming
language
parser

Yes Yes Yes Yes Yes No Yes (lexer)

Supported
programming
languages

17 (400+
possible) 25 15 1 (Java) 1 (Java) 0 300+

Graphical UI Yes Yes Yes Yes Yes No Yes
Data export Yes (CSV) No Yes (CSV) No Unknown Yes (TXT) No

25

Chapter 2. Related work

deScope3. However, in this dissertation we limit ourselves to published
free‐to‐use similarity detection tools.

2.4.1. Moss

Moss (Measure Of Software Similarity) was developed at Stanford Uni‐
versity (USA) and is offered as a web service4 freely accessible for non‐
commercial purposes. Although its source code remains proprietary,
the foundationalWinnowing algorithm was published by Schleimer
et al. (2003). Moss supports the following programming languages: C,
C++, Java, C#, Python, Visual Basic, JavaScript, FORTRAN,ML, Haskell,
Lisp, Scheme, Pascal, Modula2, Ada, Perl, TCL, Matlab, VHDL, Verilog,
Spice, MIPS assembly, a8086 assembly, a8086 assembly, and HCL2.

To utilise Moss, users must register via an automated email service,
which provides them a unique user id. Submissions of source file col‐
lections to theMoss server are facilitated through a command‐line Perl
script. The web service tokenises these files, extracts fingerprints, and
calculates pairwise similarities. Moss presents results as HTML pages,
listing pairs of highly similar source files and highlighting shared code
snippets in a side‐by‐side comparison.

According to modern standards, Moss has a rather archaic user inter‐
face. Nevertheless, the Moss community has contributed submission
scripts in other programming languages, alternative Graphical User
Interfaces (GUIs), integrations with other web services, and tools to
convert Moss HTML reports into machine‐readable formats.

Using Moss requires sending source code of students to an external
server located in the United States, potentially raising security con‐
cerns and conflicting with local privacy regulations. Moreover, the
service occasionally experiences responsiveness issues due to high
demand or unscheduled downtimes, particularly during peak exam
periods in January and June.

Since November 2022, Moss has imposed a daily submission limit of
100 submissions per user to mitigate the impact of automated bots
submitting tens of thousands of jobs daily. Regrettably, this restriction
renders Moss impractical for similarity detection in larger courses.

3gradescope.com
4theory.stanford.edu/ãiken/moss/

26

https://gradescope.com
https://theory.stanford.edu/~aiken/moss/

2.4. Source code similarity detection tools

2.4.2. JPLag

JPlag is a similarity detector crafted in Java, is still actively developed
and maintained at the Karlsruhe Institute of Technology (KIT) in Ger‐
many. Its inception dates back to 1996, with an initial publication as a
web service in 2001 by Prechelt et al. (2002), though the source code
remained undisclosed at that time.

Some years later, JPlag was released as a Moodle plugin and as a
command‐line tool executing locally. In june 2007, the JPlag main‐
tainers open‐sourced their software under the GNU General Public
License (GPL). The tool tokenises source files for supported program‐
ming languages and uses the RKR-GST algorithm (Wise 1993) to com‐
pute similarities based on the fraction of tokens covered by matching
string tiles. JPLag reports results in CSV and HTML format.

Until 2021, JPlag was mostly in maintenance mode, with only little de‐
velopment going on. Recent efforts by the current maintainers have
introduced new features and techniques. These innovations enhance
resilience against sophisticated automated obfuscation attacks by ap‐
plying token sequence normalisation (Sağlam, Brödel et al. 2024) and
subsequence merging (Sağlam, Hahner et al. 2024). Sağlam (2025)
has comprehensively documented these contributions in a doctoral
dissertation.

As of now, JPlag supports detecting similarities in 15 programming
languages (Java, C, C++, C#, Python, JavaScript, TypeScript, Go, Kotlin,
R, Rust, Swift, Scale, LLVM IR, an Scheme), 3 modelling languages
(EMF Metamodel, EMF Model, and SCXML), and plain text.

2.4.3. Plaggie

Ahtiainen et al. (2006) developed Plaggie as an open‐source altern‐
ative to the then closed‐source JPlag. Created in Java at the Helsinki
University of Technology (HUT) in Finland, Plaggiemimics JPlag s̓ func‐
tionality, employing the RKR-GST algorithm for detecting similarities.
It supports Java exclusively and reports results in HTML format.

2.4.4. Sherlock Warwick

Sherlock Warwick, developed in Java at the University of Warwick
(UK), is an open‐source tool released under the GPLv2 licence. This

HUT has since
thenmerged into
Aalto University.

27

Chapter 2. Related work

command‐line utility supports most programming languages as plain
text, and offers specific optimisations for Java (Joy and Luck 1999).

SherlockWarwick employs an incremental comparison approach, ana‐
lysing three versions of the source code: the original text, a version
with stripped from comments andwhitespace, and a tokenised version.
Thefirst two comparisons are applicable to all programming languages,
while the tokenised comparison is exclusive to Java. SherlockWarwick
determines a pairwise similarity score based on the longest common
matches of characters or tokens, with a configurable allowance of
insertions and deletions. Unfortunately, the original article does not
mention any details about the used algorithm (Joy and Luck 1999).

Despite our best efforts, we were unable to compile and execute Sher‐
lockWarwick from its source code. Essential dependencies are either
unavailable online or require a specific version that we could not
identify. Although a compiled JAR file exists, executing it yielded
no results in the GUI. Furthermore, extracting similarity values from
generated reports proved impossible due to unreadable formats and
insufficient documentation. These obstacles prevented us from includ‐
ing SherlockWarwick in our validation benchmark.

2.4.5. Sherlock Sydney

Sherlock Sydney, developed in C at the University of Sydney (Australia),
is a command‐line tool that processes all source code as plain text,
without specific support for individual programming languages.

The tool parses text files, including source code, into streams of words.
It then hashes sequences of these words and discards non‐zero hashes
after applying a bitmask, employing aWinnowing algorithm distinct
from that used by Moss (Schleimer et al. 2003). The remaining hashes
serve as digital fingerprints, with pairwise similarity calculated as the
ratio of shared fingerprints between text files. Sherlock Sydney reports
results in a text file or directly in the terminal. While processing source
code as plain text is efficient, it is less effective against obfuscation
methods typically observed in educational source code plagiarism.

The source code of Sherlock Sydney was initially available on the uni‐
versity s̓ website in 2011 but was removed in 2018. Other developers
recovered a snapshot from the Internet Archive for further mainten‐
ance on GitHub.

28

2.4. Source code similarity detection tools

2.4.6. Compare50

Compare505 is an open‐source similarity detection tool developed by
HarvardUniversity s̓ (USA) as part of their openuniversity course CS506.
It is a Python CLI program that uses five different comparisonmethods.
Four comparisonmethodsuse theWinnowing algorithm (section 2.3.2),
each on a different version of the code, ranging from the program struc‐
ture to the exact text. A fifth comparison method looks for identical
misspellings in the comments of the code, which are highly indicat‐
ive of plagiarism. Compare50 use the lexer of the Pygments7 syntax
highlighting library to support over 300 programming languages and
templating languages.

Compare50 generates Hypertext Markup Language (HTML) files with
the analysis results. It will output the topN matches between a pair
of submissions, withN = 50 by default, and list those in an overview
page. Compare50 rates each match with a score ranging from 1 to
10, combining and normalising the output of the enabled comparison
methods.

5github.com/cs50/compare50
6cs50.harvard.edu
7pygments.org

29

https://github.com/cs50/compare50
https://cs50.harvard.edu
https://pygments.org

30

Chapter 3.

Algorithmic underpinnings

Theendgoal ofDolos is straightforward: to identify similarities between
source files that may indicate potential plagiarism. Dolos achieves
this through a complex process comprising multiple steps working
in tandem. Data scientists use the analogy of a pipeline for analysis
processes that involve multiple stages. By dividing the analysis into
discrete steps with clearly defined inputs, outputs, and responsibilit‐
ies, we maintain a high‐level overview that aids in understanding and
reasoning about the pipeline.

We will describe the algorithms underpinning Dolos as the Dolos
Source Code Similarity Detection Pipeline, or the pipeline for short.
This chapter details the pipeline, focussing on the algorithms in each
step. The implementation details are left out, as thosewill be discussed
in chapter 5.

Figure 3.1 visualises the steps comprising the Dolos pipeline. We can
group these steps into three stages:

• Tokenisation: This stage transforms the source files into se‐
quences of syntax tokens (section 3.1).

• Fingerprinting: This stage extracts fingerprints from the syntax
tokens, where identical fingerprints may indicate plagiarism
(section 3.2).

• Reporting: This stage collects and aggregates the fingerprints,
to build a similarity report for manual inspection (section 3.3).

Let s̓ walk through the pipeline with a high‐level overview: We feed
a collection of source files into the pipeline, initiating the first stage:
tokenisation. The first step is parsing each source file into its concrete
syntax tree, described in section 3.1.1. This erases identifiers such as
variable names, and is robust against different usage of whitespace.
Next, the serialisation step flattens the syntax tree while tracking each

31

Chapter 3. Algorithmic underpinnings

Parsing

Serialising

Hashing

Winnowing

Indexing

Synthesis

Source files

Syntax Trees

Syntax tokens

Hashes

Fingerprints

Fingerprint Index

Similarity Report

Stage I:
Tokenisation

Stage II:
Fingerprinting

Stage III:
Reporting

Similarity Longest Fragment

Figure 3.1. Diagram of the Dolos Source Code Similarity Detection Pipeline visualising how the
pipeline processes a collection of source files into a similarity report. Concrete transformations
are listed left of the arrows, the intermediate artefacts are located on the right of a symbolic
representation.

32

3.1. Tokenisation

tokens̓ location in the original source file, detailed in section 3.1.2. This
step includes removing comment tokens, described in section 3.1.3.

The subsequentfingerprinting stage begins by hashing the list of tokens
(section 3.2.1), aggregating them into k‐grams, which are then hashed
(section 3.2.2). From the resulting k‐grams hashes, we select a repres‐
entative subset of fingerprints using theWinnowing algorithm (sec‐
tion 3.2.3). Afingerprint index aggregates thefingerprints of all submis‐
sions included in the analysis, maintaining the information needed to
map fingerprints back to their original file locations (section 3.2.4).

In the final reporting stage, Dolos builds a similarity report by synthes‐
ising information from the fingerprint index. This involves generating
all pairs of submissions (section 3.3.1), calculating their similarity
(section 3.3.2), and determining their longest common substring (sec‐
tion 3.3.3). The output provides all information needed to report the
analysis results to the instructor, who can then search for indications
for plagiarism.

In the following sections, we will give a detailed explanation of the
above steps comprising the pipeline.

3.1. Tokenisation

The first stage of the pipeline, illustrated in figure 3.3, converts each
source file into a sequence of syntax tokens, encapsulating the syn‐
tactical structure of the source file. These tokens mask identifier
names, comment contents, and constant values within anonymised
tokens. In addition, these tokens ignore whitespace, and we remove
comment tokens as part of the serialisation step (section 3.1.3). These
anonymised tokens are robust against all obfuscations in the category
of lexical changes (section 1.3.2). Source files modified only by these
obfuscations result in an identical sequence of syntax tokens and will
have a 100% similarity.

3.1.1. Parsing to a syntax tree

Converting a source code file into syntax tokens begins with parsing
the source code into a syntax tree or parse tree. Compilers perform
this step as part of their front‐end to process source code into its inter‐
mediate representation (IR). Dolos uses parsers implemented using

33

Chapter 3. Algorithmic underpinnings

def f(a, b):
 a = 3
 b = True
 return a and False

module [0,0]-[6,0]
 function_definition [0,0]-[3,22]
 name: identifier [0,4]-[0,5]
 parameters: parameters [0,5]-[0,11]
 identifier [0,6]-[0,7]
 identifier [0,9]-[0,10]
 body: block [1,4]-[3,22]
 expression_statement [1,4]-[1,9]
 assignment [1,4]-[1,9]
 left: identifier [1,4]-[1,5]
 right: integer [1, 8] - [1,9]
 expression_statement [2,4]-[2,12]
 assignment [2,4]-[2,12]
 left: identifier [2,4]-[2,5]
 right: true [2,8]-[2,12]
 return_statement [3,4]-[3,22]
 boolean_operator [3,11]-[3,22]
 left: identifier [3,11]-[3,12]
 right: false [3,17]-[3,22]

mod

id

id
id

id

id

id

par

blk
exp

exp
int

fun

ass

tru
ret
op

fls

Serialised
tokensSyntax treeOriginal source code

Figure 3.2. Example of the syntax tree and serialised tokens corresponding
to a small source code snippet. The actual syntax tokens themselves are
highlighted in bold in the syntax tree. A list of tokens is the end result of
the tokenisation phase of the similarity detection pipeline.

the Tree‐sitter1 parser generator framework by Brunsfeld et al. (2024).
This framework provides a unified Application Programming Interface
(API) for parsing source files into their concrete syntax tree (CST) for a
broad range of programming languages.

The parse tree generated by tree sitter makes a distinction between
unnamed nodes (semicolons, parentheses, …), and named nodes (iden‐
tifiers, actual keywords,…). When considering all nodes, this parse tree
is considered a CST. Dolos only takes the named nodes into account,
which is closer to an abstract syntax tree (AST). However, because an
AST includes more information as the result of subsequent processing,
we will henceforth use the term syntax tree when referring to the tree
generated by the parsing step. We provide more details on how we use
Tree‐sitter in section 5.2.

Parser types

Most modern programming languages are classified as context‐free
languages (Chomsky and Schützenberger 1959), parseable by a non‐

1tree‐sitter.github.io

34

https://tree-sitter.github.io

3.1. Tokenisation

1 let x = (y);
2 let x = (y) => true;

Listing 3.1. Example JavaScript code where the syntax token assigned to y is
ambiguous when an LR parser processes the closing bracket. The first line
assigns to x the value of y, meaning that ywould have to be an identifier.
The second line assigns to x an arrow function expression where y is a
function_argument syntax token. LR(1) parsers are unable to handle
this difference, because they decide on the token as soon as it processes the
closing bracket. GLR parsers handle this ambiguity by keeping track of all
possible parsing states, discarding states as the code progresses.

deterministic pushdown automaton. Conventionally, canonical LR
(LR(1)) parsers (left‐to‐right, rightmost derivation in reverse) are con‐
sidered algorithms to parse those programming languages in linear
time. However, LR(1) parsers are only applicable to deterministic context‐
free languages, whereas real‐life programming languages are often
ambiguous and non‐deterministic, as demonstrated in listing 3.1.

Generalised LR (GLR) parsers, introduced by Tomita (1985), offer a
solution to this problem by introducing a graph‐structured parse stack
that forks the internal parser state upon encountering ambiguity, col‐
lapsing as soon as the ambiguity resolves. This approach also facilitates
error handling: programs with incorrect syntax result in multiple pos‐
sible parser stacks at the end of the program. From these stacks, we
can select the stack closest to a working program and place an ERROR
syntax token in the parse tree corresponding to the unparseable re‐
gion (Visser 1997). The Tree‐sitter parser generator used by Dolos,
generates GLR parsers supporting incremental parsing.

Other, widespread parser implementations for code highlighting use
regular expression‐based parsers. These parsers are simpler to imple‐
ment and write grammars for, but they are limited because regular
expressions can only fully process regular grammars. Thus, these
parsers cannot produce the same quality of syntax tree or handlemore
complex programs.

3.1.2. Serialisation and locationmapping

Searching for similarities between syntax trees can be reduced to the
NP‐complete subgraph isomorphism problem (S. A. Cook 1971). To
mitigate this computational expense, we serialise each syntax tree into

35

Chapter 3. Algorithmic underpinnings

1 def generate_tokens(code: str) -> List[Token]:
2 tree = tree_sitter.parse(code)
3 tokens = []
4 tokenize_node(tree.root, tokens)
5 return tokens
6

7 def tokenize_node(node: Node, tokens: List[Token]) -> Location:
8 current_location = Location(node.location)
9 if not in node.type.includes("comment"):

10 tokens.push(Token("(", current_location))
11 tokens.push(Token(node.type, current_location))
12 for child in node.children:
13 child_location = tokenize_node(child, tokens)
14 if child_location.start < current_location.end:
15 current_location.end = child_location.start
16 output.push(Token(")", current_location))
17 return current_location

Listing 3.2. Psuedocode of the algorithm to serialise the syntax tree intro a list
of tokens while keeping track of their corresponding location in the source
file. The algorithmwalks through the tree in pre‐order, adding a token to the
output list before descending to its children and inserting pseudo‐tokens
(and) to indicate descent and ascent in the tree. This snippet already
includes code to filter out comment nodes.

a sequence of syntax tokens, which is more efficient to compare. We
use the algorithm in listing 3.2 to traverse a syntax tree in pre‐order.

While performing this transformation, we also track each syntax node s̓
corresponding location in the original source file. This allows us to
highlight matching code blocks when presenting results (section 4.6.1).
The location Tree‐sitter sets for nodes in the syntax tree includes the
whole region covered by that syntax node. For example, a function_-
declaration token will include the function body as its correspond‐
ing location in the file. This behaviour does not align for our use‐case,
as a matching function declaration would mark the full function as a
match, even if the function body differs. We address this by subtracting
a parent node s̓ end location with the start location of its children.

The output of this step is a list of tokens for each source file, consisting
of a string with the syntax token type and its corresponding location.

3.1.3. Removing comment tokens

Programmers often include comments in source code to document
and clarify parts of their programs. Instructors encourage students
to do the same, as comments help in following the studentsʼ thought

36

3.2. Fingerprinting

process during code evaluation. However, the syntax tree generated
by Tree‐sitter includes comments, so adding or removing comments
alters the syntax tree of a submission. Consequently, this obfuscation
is the only one in the category of lexical changes (section 1.3.2) that
affects the syntax tree. It is trivial for students to add comments to
their code, and doing so is an effective way to evade detection by syntax
tree based similarity detection.

As a countermeasure, the pipeline removes comment tokens. Assum‐
ing syntax node types include the literal string “comment”, Dolos ex‐
cludes tokens from the serialised list matching this string. This filter
removes both block comments and line comments.

Without this fix, Dolos s̓ similarity detection pipeline would report low
similarities for submissions differing only in their comments. For
example, in the π‐ramidal constants evaluation dataset 2, one student
plagiarised another and added a few comments to evade detection.
With only four added comments and no other structural changes, this
reduced the similarity to 87%. Adding a comment on every line would
have lowered that pair s̓ similarity to 48%, below that of other non‐
plagiarised submission pairs. With the current pipeline filtering out
comments, these submissions are 100% similar.

3.2. Fingerprinting

Now that we have a sequence of syntax tokens for each submission,
we proceed to identify similarities between submissions. Finding
common subsequences among these submissions is a complex and
computationally expensive task, especially as the number and length
of sequences increase. Additionally, we need to be able to configure
the pipeline s̓ sensitivity. For small exercises, we want to detect even a
few plagiarised lines. For larger projects, we expect more coincidental
small matches and focus only larger chunks of plagiarised code.

To address these requirements, we apply techniques described by
Schleimer et al. (2003), who describe aWinnowing algorithm to extract
local document fingerprints for detecting copies. These metaphorical
fingerprints serve a similar purpose as real fingerprints in crime in‐
vestigations: they provide clues about whowas involved. The extracted
fingerprints aim to reduce a submissions̓ data as much as possible to

2dolos.ugent.be/demo/pyramidal‐constants/evaluation/

Fingerprints is of
course used as a
metaphor, as
source code does
not have fingers.

37

https://dolos.ugent.be/demo/pyramidal-constants/evaluation/

Chapter 3. Algorithmic underpinnings

mod

id

id
id

id

id

id

par

blk
exp

exp
int

fun

ass

tru
ret
op

fls

0

2

2
2

2

2

2

3

4
5

5
6

1

7

8
9
10

13

3210

2232

5422
2542

7562

1982

4223

6254
5625

8275
2756

2321

9827

2198
1219

Serialised
tokens

Token
hashes

Hashed
k-grams (k=4)

Winnowed
hashes (w=6)

3210

2232

2542

1982
2756

2321

1219

Window of 2232 ends,
2542 is smallest hash
in next window

Each of these three
hashes replaces
the previous
smallest hash

Figure 3.3. Example illustrating how theWinnowing algorithm extracts fin‐
gerprints from a serialised list of tokens. This example illustrates the two
situations when theWinnowing algorithm selects a new fingerprint: when
a new hash has a smaller value than the previously smallest hash, and when
the smallest hash exits window and a new smallest hash is selected.

38

3.2. Fingerprinting

ensure efficient similarity detection while preserving essential inform‐
ation that could indicate plagiarism. Figure 3.3 illustrates this process
with a concrete example.

We compute a hash for each group of k subsequent tokens, known as
k‐grams. We then sample a representative set of k‐grams using the
Winnowing algorithm. This representative set constitutes the finger‐
prints of a submission. The final step of this stage involves building
a fingerprint index that facilitates fast queries to compute similarity
metrics when generating the final report.

3.2.1. Hashing tokens

The tokens in the serialised subsequences are strings with a clear de‐
scriptionof the syntax token itself, suchasidentifier,statement_block,
andreturn_statement. To speed up the fingerprinting step, we first
reduce the data by hashing these strings using a polynomial hash func‐
tion. We employ a hashing function similar to the Rabin‐Karp rolling
hash scheme (Karp and Rabin 1987), but with an infinite window in‐
stead of a rolling hash. This calculates the token hashHT for a token
with length l as:

HT = alT · c0 + al−1
T · c1 + . . .+ aT · cl−1 mod m

=

l−1∑
i=0

al−i
T · ci mod m

Where aT is the multiplier, ci is the i‐th character of the token string
starting at 0, and m is the modulus of the hash function. We can
efficiently calculate this hash incrementally by observing that, given
the hash up until the i‐th character of the token string, we can calculate
the hash including the i+ 1‐th character as:

HT,i+1 = (HT,i + ci+1) · aT mod m

Where HT,0 = c0 · aT mod m. Note that this incremental version
avoids expensive exponentiation, requiring only an addition, a multi‐
plication, and a modulo operation.

We can freely choose values for aT andm, but for an optimal hashing
function that distributes the hash values uniformly while avoiding
collisions, we must apply some requirements. First, the modulusm
determines the maximum value of the hash outputs and should be
chosen while keeping the maximum integer range in mind. Second, a
good multiplier aT should spread the input values uniformly across

This hash is often
called Rabin
fingerprinting,
but those
fingerprints
interpret their
input as bits
instead of
characters.

39

Chapter 3. Algorithmic underpinnings

1 def token_hash(token: str) -> int:
2 h = 0
3 for char in token:
4 h = (h + char) * base % mod
5 return h

Listing 3.3. Pseudocode of the algorithm transform a syntax token from its
string reperesentation to a hash using the Rabin fingerprinting scheme.
The value of base is the radix of hashing function and mod is the modulus
(a hash can never exceed this value).

the integer range dictated bym. A suitable choice of aT is the largest
prime such that aT · cmax < m where cmax is the maximum value of
a character in our token string. We explain the constants chosen in
Dolos s̓ implementation in section 5.3.1.

As an alternative to token hashes, we can use unique integer identifiers
for each syntax token. For example, each parser additionally includes
a token type identifier with each syntax node. This approach would be
slightly faster, as it does not require iterating over each character in
the token type string. Tree‐sitter assigns these tokens incrementally,
so the integer identifiers will not use all bits evenly. If we were to use
these identifiers, the multiplier aR used in the next step should be
chosen similar to aT to spread out these bits more optimally.

3.2.2. Hashing k-grams

In the next step, we hash k‐grams of k subsequent hashed tokens using
a polynomial rolling hash function. This hashing scheme is employed
within the Rabin‐Karp string matching algorithm (Karp and Rabin
1987). It is similar to the hashing scheme Dolos uses to hash tokens
(section 3.2.1), but each hash only applies to the window of k previous
tokens. Specifically, for a series of token hashes t0, t1, . . . tn, the rolling
hash of k subsequent tokens ending with ti is defined as:

HR,i = ak−1
R ti−k + ak−2

R ti−k+1 + . . .+ ti mod m

=

k−1∑
j=0

ajR · ti−j mod m

We can compute this rolling hash incrementally using only the token
hash entering and the token hash leaving the rolling hash window:

40

3.2. Fingerprinting

HR,i+1 = HR,i + ti+1 − akR · ti−k mod m

This incremental approach includes a potentially expensive exponen‐
tiation in the last term. However, we need only calculate akR mod m
once upon initialisation of the rolling hash function and reuse this
value when needed.

The value of k is a parameter of this hash function that determines
the minimum detectable length of identical syntax token sequences
between two submissions. This value is modifiable according to the
user s̓ needs. A small k results in a more sensitive pipeline that will
recognise smaller fragments of duplicated code, while potentially gen‐
erating more false positives due to coincidental similarities. Larger
values of k are less prone to false positives, but may miss smaller
plagiarised code fragments.

The constants aR and m should be chosen for the implementation
at hand. The value of m determines the largest value of a hash and
can be the same for both the token hash and rolling hash functions.
However, multiplier aR should be distinct from aT . Otherwise, the
result of hashing a token "abc" and hashing three subsequent tokens
"a", "b", and"c" in the rolling hashwould be identical. Although this
situation is unlikely to occur in practice, we can avoid it by choosing a
different values for aT and aR. Additionally, when using values from
the token hash as inputs for our rolling hash, we can assume that our
input values are already evenly distributed over the integer range [0,m).
This allows us to pick a different value for aR that further scrambles
previous hash values.

3.2.3. Winnowing

Now that we have integer hashes representing each group of k sub‐
sequent tokens, we can use the Winnowing algorithm presented by
Schleimer et al. (2003) to select a smaller, representative set of finger‐
prints for detecting similarities. TheWinnowing algorithm has two
parameters: k for the k‐gram size and w for the window size. The
parameter k directly defines the noise threshold, limiting the smallest
detectable match. The window size w indirectly determines a guaran‐
tee threshold t = k − 1 + w, guaranteeing matching sequences longer
than this threshold. Listing 3.5 shows the pseudocode of the Win‐
nowing algorithm used in the Dolos source code similarity detection
pipeline.

41

Chapter 3. Algorithmic underpinnings

1 class RollingHash:
2 def init(k: int)
3 self.k = k
4 self.hash = 0
5 self.i = 0
6 self.max_base = −akR mod m
7 self.memory = [0 for _ in 0..k]
8

9 def next_hash(token_hash: int) -> int:
10 self.hash = (self.base * self.hash + token_hash +

self.max_base * self.memory[this.i]) % this.mod↪→

11 self.memory[this.i] = token_hash
12 self.i = (self.i + 1) % self.k
13 return self.hash

Listing 3.4. Pseudocode of the algorithm for transforming a syntax token from
its string representation to a hash using the Rabin fingerprinting scheme.
The value base is the multiplier of the hashing function and mod is the
modulus (a hash can never exceed this value).

1 def winnow(int w, int k, tokens: List[str]) -> List[int]:
2 rolling = RollingHash(k)
3 r = 0 # Window right end
4 imin = 0 # Index of minimum hash
5 output = [] # Winnowed output hashes
6 # Circular buffer implementing a window of size w
7 window = [+∞ for _ in 0..w]
8 # At the end of each iteration, min holds the position
9 # of the rightmost minimal hash in the current window

10 for token in tokens:
11 r = (r + 1) % w; # Shift window
12 window[r] = rolling.next_hash(token_hash(token))
13 if imin == r:
14 # The previous minimum left the window
15 # Scan the window for the rightmost minimal hash
16 i = r + 1 % w
17 while i != r:
18 if window[i] <= window[imin]:
19 imin = i
20 i = i + 1 % w
21 output.push(window[imin])
22 else:
23 # The previous minimum is still in the window
24 if window[r] <= window[imin]:
25 imin = r
26 output.push(window[imin])
27 return output

Listing 3.5. Pseudocode of theWinnowing fingerprinting algorithm applied on
a sequence of syntax tokens. This pseudocode uses the token hash algorithm
from listing 3.3 and the rolling hash algorithm from listing 3.4. The output
of thisWinnowing algorithm is a selection of local fingerprints.

42

3.2. Fingerprinting

Fingerprint properties

TheWinnowing algorithm guarantees that it extracts at least one com‐
mon fingerprint from two submissions sharing a matching series of
tokens that is at least as long as the guarantee threshold t. This match‐
ing series does not necessarily need to be identical, as the algorithm
extracts only one representative fingerprint for that series, allowing
for small variations between two series of tokens. Shorter matching
series also have a chance of being detected, as long as they are at least
as long as the noise threshold k.

To achieve the guarantee threshold t, theWinnowing algorithm selects
the minimum hash from every window. By selecting the minimum
hash, this fingerprinting selection algorithm remains robust against
modifications of the syntax tree, which can alter the order of hashed
tokens. This occurs with many obfuscations that apply structural
changes to the submission (section 1.3.2).

However, with enough structural obfuscations, it is still possible to
inhibit proper fingerprint selection, thereby avoiding detection when
using theWinnowing algorithm. TheWinnowing algorithm is known
to be vulnerable to injecting many redundant code fragments, which
can substantially lower the similarity reported by many similarity de‐
tection tools (Devore‐McDonald and Berger 2020). However, these
attacks require advanced knowledge or the use of specialised tools,
resulting in abnormal and suspicious‐looking submissions. We em‐
phasise that the primary purpose of Dolos is to detect obfuscations
made with fragile knowledge. Advanced programmers can often re‐
write programs in ways that even expert eyes would not discern as
plagiarism, making this kind of attack unlikely in practice.

Winnowing output

In addition to selecting fingerprints from the stream of hashed tokens,
an actual implementation must also track fingerprint locations in the
submitted source files. These locations allow us to map matching
fingerprints back to the original source file, showing instructors which
parts of the source files share similarities. The visualisation comparing
pairwise matches, discussed in section 4.6.1, utilises this fingerprint‐
location mapping.

The Winnowing algorithm outputs the selected fingerprints in the
same order as the hashed syntax tokens. Thus, we can consider this
algorithm as a filter that retains only the fingerprints while preserving
their order in the list of output hashes. This property is important

43

Chapter 3. Algorithmic underpinnings

1 def build_index(submissions: List[str]) -> Dict[int,
Fingerprint]:↪→

2 index = {}
3 for submission in submissions:
4 tokens = generate_tokens(submission)
5 for hash, location in winnow(k, w, tokens):
6 if hash not in index:
7 index[hash] = Fingerprint(hash)
8 index[hash].update(submission, location)
9 submission.fingerprints.add(index[hash])

10 return index

Listing 3.6. Algorithm used to build the index applied on a sequence of syntax
tokens. This pseudocode uses the token hash algorithm from listing 3.3 and
the rolling hash algorithm from listing 3.4.

when calculating the longest duplicated fragment, as discussed in
section 3.3.3.

3.2.4. Building the fingerprint index

As the final step in the fingerprinting phase, a fingerprint index col‐
lects winnowed fingerprints from all submissions, as illustrated by
listing 3.6. The fingerprint index supports quick insertion of new fin‐
gerprints during its construction and efficient queries when building
the similarity report. This index stores a record for each fingerprint
containing information about which submissions it appears in, and
its locations within those submissions. Due to internal code duplica‐
tion, a fingerprint may occur multiple times in a single submission.
Additionally, the index tracks which fingerprints belong to each sub‐
mission.

Ignoring template code

Assignments for programming exercises often include a template with
predefined code, where students must write new code in designated
places. This template code is not intended for modification, so all
students will share these common code fragments, resulting in many
shared fingerprints that are not indicative of plagiarism. These fin‐
gerprints can overshadow those that actually indicate plagiarism. To
mitigate this effect, the similarity detection pipeline includes an option
to hide potentially harmless fingerprints.

44

3.3. Reporting

As a first method to ignore certain fingerprints, Dolos allows the sub‐
mission of template code as ignored files. The pipeline parses and
winnows this code in the same way as normal submissions but marks
their fingerprints as ignored. The similarity metrics exclude these fin‐
gerprints, and the match comparison editor (section 4.6.1) indicates
that these code fragments were ignored.

Ignoring common fingerprints

The similarity detection pipeline also supports ignoring fingerprints
that occur more than a user‐defined threshold. There are situations
where submissions can share code fragments that do not indicate
plagiarism:

• The programming assignment requires using a specific API with
initialisation code that will be very similar across student sub‐
missions.

• The instructor provided an example that solves part of the as‐
signment.

• Students need to implement a given interface fromscratch,which
will naturally result in the same class structure.

Since instructors cannot always predict which code will be innocent,
they can instruct the pipeline to ignore fingerprints if they occur in
more than m submissions. Instructors can set this parameter m as
an absolute value (e.g. 10 submissions or more) or as a fraction (e.g.
in 60% of the submissions under analysis). As soon as a fingerprint
occurs inm submissions or more, the pipeline marks it as ignored.

This creates an interesting prisoner s̓ dilemma (Luce and Raiffa 1957)
for students: if enough students share the same code fragment, their
plagiarismmight go undetected. We recommend setting this threshold
conservatively when using this option. Dolos does not have a threshold
set by default, but instructors can set one using the -m or -M command‐
line options (see chapter A).

3.3. Reporting

Up to this point, the Dolos source code similarity detection pipeline
has extracted fingerprints for each submission, which may indicate
code fragments with identical underlying structures. Note that a single
fingerprint still corresponds to a single k‐gram of k subsequent tokens

45

Chapter 3. Algorithmic underpinnings

from the syntax tree. The pipeline extracts fingerprints such that if two
submissions share amatching sequence of at least t = w+k−1 tokens,
they will share at least one fingerprint. There is also a very small
chance of a hash collision, causing submissions to share a fingerprint
that does not correspond to the same syntax tokens. Now everything
is ready to query this index to build a similarity detection report.

The main result in a similarity detection report is the list of all submis‐
sion pairs and three calculated metrics:

• Total overlap: Represents the total number of fingerprints shared
between a pair, providing an absolute measure of the amount of
shared code.

• Similarity: Indicates the fraction of shared fingerprints relat‐
ive to the total number of fingerprints in the two submissions,
revealing how similar the two files are.

• Longest fragment: Denotes the maximum number of consecut‐
ive fingerprints shared between the submission pair, calculated
as the longest common substring.

3.3.1. Comparing pairs

The similarity detection pipeline compares all pairs of submissions un‐
der analysis. With n submissions, the total number of pairs is n(n−1)

2 ,
making this step an inherently Θ(n2) process. Comparing all pairs
and computing their metrics, specifically calculating the longest com‐
mon substring (LCS) (section 3.3.3), consumes most of the pipeline s̓
execution time.

Although this part of the pipeline has undergone significant optim‐
isations, such as postponing expensive computations (section 3.3.4),
the quadratic nature of this step is still dominating the execution time.
However, instructors are rarely interested in all pairs. For example,
100 submissions result in 4 950 pairs, and 200 submissions result in
19 900 pairs. When inspecting a similarity detection report, only the
most similar or suspicious pairs are of interest.

It is still an open research question whether we can efficiently find
the topmost similar pairs without comparing all submissions, as this
would speed up Dolos s̓ analysis speed dramatically. As of writing,
we are building a prototype to construct an index using a generalised
suffix tree. This alternative index could facilitate gathering the most

46

3.3. Reporting

similar pairs without calculating all pairs. We discuss this approach in
more detail in section 7.2.3.

3.3.2. Computing similarity

Whencomparing apair of submissions, the similarity detectionpipeline
gathers all fingerprints associated with each submission. For one sub‐
mission x in a submission pair, we define the following values:

• Tx is the total number of fingerprints extracted from that sub‐
mission (including ignored fingerprints).

• Ix be the number of fingerprints marked as ignored.

• Sx is the number of fingerprints from x also occurring in the
other submission of this pair, excluding ignored fingerprints.

With these values, we can define the total overlap and similaritymet‐
rics.

Similarity

The similarity between a submission pair is inspired by, but distinct
from, the Jaccard similarity index (Jaccard 1901). We calculate the
similarity S(a, b) between two submissions a and b as:

S(a, b) =

{
Sa+Sb

Ta+Tb−Ia−Ib
if Ta + Tb − Ia − Ib > 0

0 otherwise

Note that Sa and Sb are not necessarily the same, as a fingerprintmight
have a different number of occurrences in submissions a and b due to
internal duplication of that fingerprint.

Total Overlap

The similarity metric is highly dependent on submission size. It can
easily inflate for small files, or students attempting to hide plagiarism
can artificially lower this metric by adding a lot of superfluous content.
In such situations, it might be interesting to only look at the numerator
of the similarity metric. We call this metric the total overlap O(a, b),
calculated as:

O(a, b) = Sa + Sb

47

Chapter 3. Algorithmic underpinnings

3.3.3. Computing the Longest Common Substring

Another interestingmetric when analysing submissions for plagiarism,
is the length of the longest duplicated code fragment. When many
submissions under analysis share small code fragments that are not
the result of plagiarism, this can inflate their similarity and total over‐
lap metrics, potentially hiding longer shared code fragments that are
actually plagiarised.

Dolos captures these longer fragments using the longest fragment
metric. This metric is the length of the LCS of fingerprints between the
two submissions in a submission pair, calculated by the pseudocode
in listing 3.7.

When both submissions in a pair have n extracted fingerprints in total,
counting the shared fingerprints and calculating the similarity and
total overlapmetric requireΘ(n) time. In contrast, calculating the LCS
takes Θ(n2) time with the dynamic programming algorithm used in
our pipeline. This step is the most computationally expensive in the
whole similarity detection pipeline.

Algorithmsexist to compute theLCS inΘ(n) timeusing suffix trees (Gus‐
field 1997). However, these algorithms are complex and might not ne‐
cessarily result in an absolute speedup when used for this part alone.
Experiments are currently ongoing to test an alternative index using
generalised suffix trees. We describe our progress and the preliminary
results in section 7.2.3.

3.3.4. Delayed calculation of fragments

Using thematching fingerprints between a pair of submissions, we can
map these fingerprints back to their corresponding locations in the
original source files. When doing this, we want to combine multiple
subsequent identical fingerprints into matching code fragments.

Previous versions of Dolos would always reconstruct all matching code
fragments for all submission pairs. The length of the longest fragment
was used for its namesake metric, and the fragments themselves were
serialised for use in the web user interface (UI). However, reconstruct‐
ing full fragments is computationally expensive, and the serialised data
requires significant disk space. When we discovered that the longest
fragment length was equivalent to calculating the LCS, we switched to
that implementation.

48

3.3. Reporting

1 def lcs(left: List[Hash], right: List[Hash]) -> int:
2 prev = [0 for _ in left.length]
3 curr = [0 for _ in left.length]
4 longest = 0
5 for r in right:
6 i = 0
7 for l in left:
8 if l == r:
9 if i == 0:

10 curr[i] = 1
11 else:
12 curr[i] = prev[i - 1] + 1
13 longest = max(curr[i], longest)
14 i++
15 prev = curr
16 curr = [0 for _ in left.length]
17 return longest

Listing 3.7.Dynamic programming algorithm to calculate the longest common
substring using dynamic programming. After each iteration of the outer
for‐loop, prev contains in each index of prev the longest substring up
until the currently processed part of the right hashes. The run‐time of
this algorithm isΘ(n2) for strings of length n.

The Dolos web UI now calculates the fragments on‐demand when view‐
ing the comparison page (section 4.6.1), as it is more useful to highlight
full fragments instead of individual matching fingerprint pairs. Since
the web UI only needs to construct fragments for a single pair, the cur‐
rent unoptimised algorithm is still fast enough in most situations.

The algorithm used to construct fragments from fingerprints com‐
prises multiple steps:

1. Create all fingerprint pairs between fingerprints shared between
the current submission pair

2. Put each fingerprint pair in its own fragment

3. Iteratively merge subsequent fragments

4. Remove smaller fragments completely enveloped by bigger frag‐
ments

The resulting fragments include the fingerprints they envelop, and
their start and end location in each of the source files. Note that as
fingerprints may occur multiple times in the same source file, a single
line of codemay appear in multiple fragments andmay havematching
counterparts inmultiple locations in the other source file. The number
of fragments increases quadratically with the number of identical

49

Chapter 3. Algorithmic underpinnings

fingerprints present in a submission pair. There are known degenerate
cases where fragments of repetitive tokens, such as array literals with
many elements, result in an explosion of fragments.

50

Chapter 4.

User Interface and User Experience
design

In computer science, problems are typically well‐defined, and the
software and algorithms addressing these problems are logical and
objective. We have established methods for verifying the correctness,
providing a clear indication the problem is solved.

In the realm of user interface design, or design in general, identifying
and defining the exact problem to solve is often much more challen‐
ging than solving it. This observation also applies to the field of source
code plagiarism detection tools. Academics have invested significant
effort and time in developing sophisticated algorithms to detect and
circumvent attempts to conceal plagiarism. Still, instructors are often
reluctant to investigate and prosecute plagiarism. This leads Albluwi
(2019) to the following conclusion about source code similarity detec‐
tion tools:

Building better tools, with user experience in mind, that offer
features across the whole workflow is important. Currently,
such tools are not available.

With Dolos, we make an attempt to fill this gap.

The following sections present the design of the Dolos user interface
(UI), with a focus on the Dolos web UI. Although Dolos also features
a command‐line interface (CLI), users will spend most of their time
interactingwith theDoloswebUI.Thosewishing to conduct a similarity
analysis can also do so exclusively through the web UI, thanks to the
Dolos web server (section 5.6). Henceforth, unless specified otherwise,
the term UI refers to the Dolos web UI.

Section 4.1 outlines the design methodology and the philosophy of
the UI. Subsequent sections explore the major components of the
UI, descending the result hierarchy from top to bottom: beginning

51

Chapter 4. User Interface and User Experience design

with a bird s̓‐eye overview in section 4.3, zooming in on our flagship
plagiarism graph visualisation in section 4.4, and then delving into
more granular details with clusters in section 4.5, pairs in section 4.6,
and submissions in section 4.7. We end this chapter by showing how
the Dolos UI evolved over time in section 4.8.

While reading this chapter, we invite you to experience the Dolos UI
firsthand by visiting one of our demos on dolos.ugent.be/demo. The
screenshots in the UI description primarily feature the π‐ramidal con‐
stants exercise, either in evaluation setting or as a mandatory exercise.
We encourage you to inspect these reports closely: whom would you
suspect of commiting plagiarism? Who was the source? What did the
plagiariser do to conceal their actions?

4.1. Designmethodology

Dolos first started as a prototype in 2019 and has since undergone iter‐
ative improvements. By adhering to the philosophy of “release early,
release often”, we maintain a short feedback loop between develop‐
ing new features and testing them. Since the initial release in 2021,
we have published 33 releases in total, averaging a new release every
one‐and‐a‐half months.

Within this development cycle, we first built a prototype by implement‐
ing well‐studied and battle‐tested algorithms for similarity detection
(chapter 3). Once this prototype was complete, we created benchmarks
to compare its performance with state‐of‐the art tools (section 6.2).
These benchmarks indicated that Dolos performed on par with JPlag
and Moss, the two most widely used similarity detection tools.

Following this, we focussed on creating a smooth user experience
(UX). The Dolos UI evolved incrementally and iteratively: we added
new pages with novel visualisations, improved existing visualisations
and UI elements, and occasionally removed functionality that overly
complicated the UI. Throughout this process, we enhanced the UI by
applying fundamentals from UX design.

The design process of Dolos culminated in 2022 with a UI/UX design
course in collaboration with UXCoach1. This course reinforced the
fundamentals of UXdesign: applying designprinciples, creating design
prototypes, and validating a design with users. During this course, we

1www.uxcoach.be

52

https://dolos.ugent.be/demo
https://www.uxcoach.be

4.1. Design methodology

used Dolos as a case study, resulting in a redesign of the UI, which has
continued to evolve into the current Dolos UI.

4.1.1. Usability Testing

One effective way to validate and improve UX design is through the
use of usability testing, also known as user testing. In these tests, a
researcher evaluating a design invites participants to use the tool to
perform specific tasks. The researcher often asks the participant to
think out loud and explain their rationale behind their interactions
with the UI. Meanwhile, the researcher observes these actions and
notes any challenges the participants face, alongwith their feedback.

This approach is well‐suited to assess whether the UX design is as effect‐
ive as the designer intended. The designer structures the UI elements
based on their assumptions about user expectations. However, users
have to discover this structure, and this rarely matches perfectly with
the designer s̓ hypothesis. The issue is that designers cannot effectively
test their own designs, as they already have a good understanding of
the UI structure.

During the summer of 2022, the Dolos team conducted extensive user
studies to identify improvements for the Dolos UI. Participants used
Dolos to search whether there was any plagiarism in demo datasets.
We observed that participants struggled with UI elements focussing on
file pairs, often preferring to focus on single submissions instead. The
introduction of the submission detail page (section 4.7), along with
refinements of the overview page (section 4.3) and the cluster detail
page (section 4.5.1), are direct and valuable outcomes of this study. We
consider these views among the most useful for gathering detailed
information about potential plagiarism.

4.1.2. Philosophy

The philosophy behind the Dolos UI comprises two major parts: UI
design, which ensures that UI elements are clear and form a coherent,
modern interface, and UX design, which defines how the users interact
with Dolos.

53

Chapter 4. User Interface and User Experience design

Use Interface (UI)

The Dolos UI aims to provide a coherent and modern user interface by
adhering to the Material Design specification2. Developed by Google
and applied in many of their products, this specification leverages
print design principles, such as typography, grids, space, scale, colour,
and imagery, to create contemporary user interfaces.

Material Design employs a metaphor of physical material, designing
UIs that resemble paper and ink, using colour, shadows, and edges
to convey depth. By emphasising bold typography, vibrant colours
and intentional white‐space, the UI is purposeful and directs the user s̓
attention to the most critical information. Unlike physical paper, di‐
gital interfaces can incorporate motion: animations and transitions
provide meaningful context and feedback, enhancing the overall user
experience.

Cards are fundamental UI elements in Material Design, organising
information concisely and effectively. Layouts typically feature a col‐
lapsible navigation drawer that slides in from the side of the screen,
offering quick access to an applications̓ main pages.

Dolos utilises UI components from the Vuetify3 component library,
which includes components and layouts designed according to the
Material Design specification. Section 5.5 explains in more detail how
we incorporated these components into the Dolos UI.

User Experience (UX)

To consider the UX of the Dolos UI, we first clearly define the goal.
Dolos s̓ primary purpose is supporting educators to prevent, detect,
and prosecute source code plagiarism. However, the similarity detec‐
tion pipeline only identifies similarities between files in the analysed
dataset. Therefore, the dashboards do not merely display these simil‐
arities, but use them to provide visualisations that aid in discovering
potential plagiarism. Additionally, we target two primary scenarios
where instructors will use Dolos:

• Tests and exams (summative assessments): Students individu‐
ally solve programming exercises, often under supervision, to
evaluate their learning. Solutions should be independent, so
we expect low similarity between non‐plagiarised submissions.

2m3.material.io
3vuetifyjs.com

54

https://m3.material.io
https://vuetifyjs.com

4.1. Design methodology

Plagiarism during official evaluations is a serious academic mis‐
conduct, so instructors are interested in each suspicious submis‐
sion. In this situation, Dolos should always highlight pairs with
abnormally similar code fragments.

• Training exercises (formative assessment): Students develop
their programming skills by solving exercises over a longerperiod.
Collaboration is common, with students helping each other by
sharing ideas or code fragments, leading to higher similarities
between submissions. In this context, instructors monitor the
level of collaboration to safeguard the learning process. Thus,
Dolos should also provide a global overview of the collaboration
levels.

With these two use cases in mind, we developed a dashboard that
allows exploring a dataset of source code files to determine which
files contain similar code fragments that could indicate plagiarism. In
addition to these primary use cases, Dolos adheres to several extra
design goals:

Dolos should minimize obstacles for plagiarism detection. One of the
reasons for developing Dolos is to encourage instructors to check for
academic dishonesty. It is therefore crucial that there are no barriers
preventing instructors from performing a quick similarity check. We
have incrementally removed these obstacles: transitioning from a
CLI to a web UI, releasing a web server, and integrating with external
platforms (section 5.6.2). Instructors can now perform a plagiarism
check from within the Dodona exercise platform with a single click of
a button.

Instructors should be able to use Dolos efficiently. We aim to reduce
the time spent checking for plagiarism. The first thingmost instructors
want to know is whether any plagiarism has occurred. Dolos s̓ landing
page prioritises displaying information that supports this decision,
making suspicious cases immediately visible. If an instructor suspects
plagiarism, the Dolos UI should provide further leads to inspect these
cases closely, allowing them to confirm or dismiss their suspicions.

Dolos is an aid, not a judge. It does not decide whether high similarity
is the result of plagiarism; that responsibility lies with the instructor.
We do not attempt to influence this decision by preemptively flagging
submissions. However, we do suggest a similarity threshold above
which certain submissions are more visible than others, but the user
can freely adjust this threshold.

55

Chapter 4. User Interface and User Experience design

Dolos deters plagiarism. When instructors indicate they are using a
similarity checker, this should already dissuade students from com‐
miting plagiarism. Hopefully, demonstrating Dolos s̓ capabilities de‐
creases the studentsʼ perceived opportunity to plagiarise (section 1.2.2).
Of course, while doing this, Dolos should respect studentsʼ privacy and
hide identifying information.

Dolos should be flexible. Usersʼ needs can vary greatly, and Dolos
should not inhibit any use cases. While we do focus on providing
access to a similarity checker with sensible default settings, we also
support alternative approaches for more technically included power
users and developers. This facilitates other uses of Dolos. In chapter 5,
we describe the various points of access Dolos provides to its similarity
detection pipeline. This approach has yielded creative applications of
Dolos, described in section 8.2.

4.2. General UI structure

The Dolos UI features some UI elements visible on every page for easy
access to navigation and global setting.

4.2.1. Navigation

The navigation drawer on the left (figure 4.1b) slides open to provide
quick access to Dolos s̓ main pages. In server mode, the top navigation
option links back to the upload page, allowing users to submit a new
dataset for analysis. Below this, the drawer lists the main pages, high‐
lighting the current page with a grey outline. External links to the
GitHub repository, documentation, contact email address, and the cur‐
rent versions̓ release notes appear at the bottom, offering additional
information. When collapsed, the navigation drawer disappears com‐
pletely on small screens to save space. On larger screens, a collapsed
navigation drawer still displays page icons for quick access.

Detail pages such as the cluster detail, submission detail, and com‐
parison pages, are not immediately accessible through the navigation
menu. When visiting these pages, breadcrumbs at the top provide in‐
formation about the page hierarchy and link back to the parent page.

56

4.2. General UI structure

(a) Application bar shown on top of the Dolos UI. The hamburger menu (left) extends the
navigation drawer (figure 4.1b). Three buttons on the left allow the user to download the
current dataset, share this report, and open the global settings panel (figure 4.1c).

(b) Navigation drawer sliding in from the left
of the page. It provides a link to the upload
page (in servermode), themain pages, and ad‐
ditional links to the GitHub repository, doc‐
umentation, contact email, and current re‐
lease notes.

(c) The global settings pannel for adjusting
global settings of the Dolos UI. A similar‐
ity threshold slider influences which sub‐
missions are clustered together. The an‐
onymisation toggle button allows instruct‐
ors to safely display the Dolos UI to stu‐
dents, while studentsʼ information stay hid‐
den. The active labels allow hiding submis‐
sions with certain labels from the Dolos UI.

Figure 4.1. Sections of the Dolos UI visible on every page.

57

Chapter 4. User Interface and User Experience design

Application bar

An application bar, also known as a navigation bar, at the top displays
the current report title on the left, aiding in distinguishing the current
report when analysing multiple reports. On small screens, a ham‐
burger menu on the left toggles the navigation drawer. The right side
of the application bar features a cogwheel symbol to open the global
settings pane (section 4.2.3). When the UI operates in server mode for
the web server (section 5.5.5), the right actions of the application bar
include a download button to download the current dataset, and a
share button to distribute a link to the current report.

4.2.2. Metadata

Dolos allows the inclusion of metadata with submission files by provid‐
ing an info.csv file (section 5.3.2). This metadata includes the au‐
thor s̓ name, submission timestamp, and a label. The Dolos UI pro‐
gressively enhances when this metadata is included. Each label will
have a colour assigned, which appears in visualisations such as the
plagiarism graph (section 4.4). Other visualisations, such as the cluster
timeline (section 4.5.1) require specific metadata and will only ap‐
pear when this data is available. As metadata can provide valuable
additional insights, the UI reminds users to include it when possible.

4.2.3. Global settings

The settings panel (figure 4.1c) allows users to modify the behaviour of
the Dolos UI by adjusting global settings. These settings apply across
all pages, but can also be quickly reverted.

Similarity threshold

The similarity threshold determines a threshold above which a similar‐
ity between a pair of submissions is considered suspicious. Submission
pairs exceeding this threshold will receive more prominent attention
in the UI. This threshold also dictates which submissions are connec‐
ted in the plagiarism graph (section 4.4), and how submissions group
together to form clusters (section 4.5).

Specialised pages, such as the plagiarism graph, feature an additional
and more prominent slider. Manipulating this additional slider has
the same effect as using the slider in the global settings panel.

58

4.3. Overview

Anonymisation

Demonstrating Dolos s̓ capabilities to a group of students can reduce
their perceived opportunity to commit plagiarism and evade detection,
helping in preventing plagiarism. However, instructors may wish to
avoid revealing studentsʼ personal information during such demonstra‐
tions. To accommodate this, Dolos features a global anonymisation
toggle. When enabled, Dolos replaces authorsʼ names, labels, and
file names with randomised pseudonyms, concealing this personal
information. The UI consistently uses these pseudonyms across its
pages, allowing teachers to track individual students throughout the
report.

Labels

Dolos allows the inclusion of a label with each submission. While the
meaning of this label is opaque for Dolos, instructors typically use
labels to organise students into various groups. The UI visually groups
submissions sharing the same label together by assigning a distinct
colour to every label. The global settings feature a toggle button next
to the label list, enabling users to filter out certain labels. For example,
instructors can label submissions of teaching assistants in the dataset
to easily exclude them from the report.

4.3. Overview

Exploration of the complete collection of submissions begins with an
overview dashboard, as shown in figure 4.2. This dashboard summar‐
ises the plagiarism detection results through its analytics and visualisa‐
tions, providing an initial indication of whether plagiarism is prevalent
within the analysed submissions. The collection information card, loc‐
ated in the top left, displays basic statistics about the collection under
analysis. Colour codes, representing the highest and average pairwise
similarities between submissions, appear in the top centre and bottom
left. These codes indicate the level of similarity, ranging from low
(green) to average (orange) and high (red).

A histogram in the top right and a list in the bottom left detail the global
similarity of each source file with its nearest neighbour. The composi‐
tion of clusters, depicted in the bottom right, represents submissions
as circles marked with an acronym derived from the author s̓ name,

59

Chapter 4. User Interface and User Experience design

(a) Overview page shown on the π‐ramidal Constants exercise page. As the students could
collaborate freely, this dataset includesmany copied submissions, noticeable as a big spike
at 100% in the similarity histogram. The clusters shown indicate that therewas not a single
source of the plagiarism. Multiple clusters have formed, often between students of the
same study programme (indicated by submission colour).

(b)Overviewpage shownon theπ‐ramidal Constants evaluationpage. During this evalutation,
communication was not permitted, resulting in the normal distribution shown in the
similarity histogram. However, two suspicious pairs stand out with 100% similarity, each
pair forming a cluster with two submissions.

Figure 4.2. Screenshots of the overview page in two different scenarios: an homework assignment
(figure 4.2a) and an exam (figure 4.2b). This page is the first page shown when opening a Dolos
report.

60

4.3. Overview

coloured according to their label. Both individual submissions (bot‐
tom left) and clusters (bottom right) are ranked in descending order of
plagiarism suspicion.

Thewebapplicationdetermines anappropriate initial similarity threshold
for clustering using a simple heuristic. Users can adjust this threshold
either via the histogram in the top right panel or in the global settings,
accessible from the far right of the top navigation bar. Additionally,
all dashboards feature a shared setting to anonymise analytics and
visualisations, useful for in‐class demonstrations, and a label‐based
filtering option for the collection of source files.

In summative assessments, highly suspicious submissions become im‐
mediately visible in the submission list. When analysing submissions
during formative assessments, the similarity histogram and clusters
list provide an impression of the severity of plagiarism among the
analysed submissions.

4.3.1. Similarity Histogram

The top left visualisation on the overview dashboard displays the simil‐
arity distribution as a histogram. For each submission, it identifies the
most similar other submission. The similarity histogram organises the
similarities in buckets at 5% intervals and plots the submission count
for each bucket. This results in a histogram that effectively assesses
the situation.

Even without collaboration among students, we expect parts of sub‐
missions to exhibit random similarities with those of other students.
In cases where there is no plagiarism, we expect the histogram to ap‐
proximate a bell‐shaped function. The bell curve will peak around the
mean similarity value of the collection. This mean similarity typically
depends on the exercise complexity: simpler exercises will exhibit
less variation between submissions, resulting in a higher average and
a bell curve shifted towards higher similarities.

In contrast, when students collaborate or plagiarise, their submissions
exhibit greater similarity to one another. This results in a histogram
displaying the superposition of two bell‐shaped functions, creating
two distinct peaks: one around the mean similarity value expected
for the exercise, and another at a higher similarity percentage due
to plagiarised submissions. We leverage this property to estimate a
threshold similarity value, described in section 4.3.2. This threshold

61

Chapter 4. User Interface and User Experience design

appears as a vertical black line on the histogram and is adjustable via
the slider on the top left.

The number of submission pairs increases quadratically with the num‐
ber of submissions in the collection. Most of these pairs exhibit low
similarity, even when plagiarism is prevalent. A histogram of all pair‐
wise similarities, rather than just the nearest neighbour for each sub‐
mission, would bucketmost similarities in the lower percentages, over‐
shadowing the high similarity pairs.

4.3.2. Automatic similarity threshold estimation

A global similarity threshold determines which pairs of source files
are suspect, connecting them by an edge in the plagiarism graph and
influencing how the dashboard clusters submissions. The goal is to
minimise false positives (suspected or clustered files that are not plagi‐
arised) and false negatives (undetected plagiarism events). However,
selecting the optimal threshold can be challenging, as this depends
on various factors, including expected file size, number of students,
programming language used, and the diversity of the solution space.
Thus, the threshold is highly dependent on the collection of source
files under analysis.

To assist educators, the web app automatically estimates an initial
threshold for a given collection. This estimate assumes that the sim‐
ilarity distribution comprises two bell curves: one centered around
the lower half, corresponding to non‐plagiarised submissions, and an‐
other near the maximum, corresponding to plagiarised submissions.
Dolos employs a heuristic to estimate the intersection point of these
two distributions as the initial threshold.

The web app assigns the pairwise similarities to bins with an interval
width of 3%. Each bin with fewer associated pairs than its adjacent
bins represents a local minimum and is considered a candidate for
the estimated threshold. Dolos selects the local minimum correspond‐
ing to the bin with the highest value, resulting frommultiplying the
square root of the associated pairs count (to discourage large local min‐
ima) with a probability density distribution centred around 80%. This
heuristic is based on an educated estimate and assumptions that may
not always hold true. The estimated value serves as an initial guess,
but users are encouraged to modify this value based on their experi‐
ence. Selecting a good estimate for the similarity threshold remains
an open research question, with possible improvements discussed in
section 8.3.2.

62

4.4. Plagiarism Graph

4.4. Plagiarism Graph

The plagiarism graph, shown in figure 4.3, visualises all submission
comparisons as an interactive force‐directed graph. Nodes represent
the submissions in the collection, and pairs of nodes with similarit‐
ies exceeding the threshold are connected by an edge, whose thick‐
ness corresponds to the degree of similarity. Interconnected nodes
form a cluster, outlined in the most prevalent node colour within that
cluster.

Clicking a node reveals an information card with supplemental details
about the corresponding submission and its cluster. Users can drag
nodes to their liking to arrange nodes and clusters as desired. The bot‐
tom left of the interface features a play‐pause toggle button to control
the simulation.

If the metadata included in the analysis provides submission labels,
nodes are coloured according to this label. A legend positioned in
the top right reveals the relationship between node colours and labels.
Clicking on an item in this legend temporarily filters out all submis‐
sions with that label from the analysis and removes the corresponding
nodes from the plagiarism graph.

The similarity threshold can be adjusted interactively using a slider. A
checkbox controls whether singletons — nodes not connected by an
edge to any other node — should be displayed. Revealing singletons
provides a better understanding of the sparsity of the solution space
for a programming exercise and the prevalence of plagiarism within
the submitted solutions.

The plagiarism graph offers effective visualisations for monitoring
formative assessments, allowing teachers to interact intuitively with
the analysis results. Cluster sizes provide an immediate impression
of the collaboration level within the dataset. Revealing the plagiarism
graph (with anonymisation turned on) also serves as an effective pre‐
vention method, as students can identify themselves and their friend
group within the clusters. By using the study program as labels, we
observe that most students share submissions with direct colleagues.

The plagiarism graph has undergone the most iterations of all visu‐
alisations. Section 5.5.3 provides more details on our specific imple‐
mentation of the plagiarism graph.

63

Chapter 4. User Interface and User Experience design

Figure 4.3. Plagiarism graph showing suspected cases of plagiarism within the same collection
of source files used for figure 4.2a. Each node represents a source file and has a colour that
corresponds to its file labels. The legend (top right) can be used to include or exclude files
from the graph by label. Edges connect nodes whose pairwise similarity exceeds an adjustable
threshold (bottom right), set at 83% global similarity. Clusters of connected nodes are grouped
within regions whose background colour reflects the dominant colour of the cluster nodes.
Cards on the left provide information on the current selected node and cluster (green node in
the rightmost pink cluster).

64

4.5. Clusters

4.5. Clusters

Traditional source code plagiarism tools typically report potential pla‐
giarism from the perspective of individual files or file pairs. However,
larger groups of collaborating students quickly result in an unmanage‐
able list of file pairs (e.g. 10 students closely working together result
in 45 file pairs), which may be scattered across a list of reported file
pairs. In contrast, visualising the same data as a clustered graph feels
intuitive and provides a natural transition to the clustering pages.

The concept of a cluster is now an integral part of the Dolos dashboard
design as a separate hierarchical level. This feature helps distinguish
between peer‐to‐peer plagiarism events (two students sharing code)
and broadcast events (larger groups of students sharing code, e.g. via
social media). The cluster dashboard reconstructs the distribution
timeline based on submission timestamps. This feature is useful for
tracking the original author or observing how the distribution process
has evolved over time.

Dolos groups submissions in clusters using the single‐linkage cluster‐
ing algorithm. This algorithm iteratively merges two clusters when
a pair exists between nodes in the two clusters exceeding the global
similarity threshold. Submissions that do not have an associated pair
with a similarity exceeding this threshold do not belong to a cluster,
instead they are considered singletons. This plagiarism graph implicitly
applies this algorithm, where groups of interconnected groups form
the clusters considered by Dolos.

The Dolos UI provides a list of all clusters for the current similarity
threshold on the cluster View by cluster page (figure 4.4). Each cluster
row includes a summary of the composition shown by circles with
the author s̓ initials, coloured according to the submission label. The
cluster table also shows the average similarity and the number of
submissions included in that cluster. Clicking on a row directs the user
to the cluster detail page (figure 4.5).

4.5.1. Cluster detail

The cluster detail page allows further inspection of the current cluster.
A table lists submissions and pairs included in this cluster, together
with supporting information. The dashboard further visualises this
information in three visualisations: the cluster graph, cluster timeline,
and cluster heatmap.

65

Chapter 4. User Interface and User Experience design

Figure 4.4. View by cluster page listing the clusters for the current similarity threshold. Circles with
author initials, coloured according to the submission label, show each cluster s̓ composition.
Average similarity and number of submissions is located on the right of each row.

The cluster graph is a miniature version of the plagiarism graph, only
including the submissions of the current cluster.

Cluster timeline

When the current collection includes metadata with the submission
timestamps, a cluster timeline appears in the bottom left. This cluster
timeline places a node on the timeline according to the submission
timestamp, visualising the order of submissions. This information
can help in discerning how plagiarised copies spread throughout the
students involved in the current cluster.

The cluster on figure 4.5 clearly shows how Antonin Fletcher (labeled
in green) submitted their solution on 19 October, with plenty of time
to spare on the deadline of 26 October at 22:00. Other students from
another study programme (Slytherin, labeled in pink) started handing
in similar submissions after 23 October. We also observe four students
submitting very close to the deadline, indicating a certain urgency.

Note that this Dolos report only includes the latest submission of each
student. Students handing in plagiarised submissions and increment‐
ally handing in new submissions with more obfuscations are not in‐
cluded in this report.

66

4.5. Clusters

Figure 4.5. Cluster detail page presenting information on a group of similar submissions. A
table with included submissions and pairs (top left), shows submission timestamps, with the
first submission timestamp highlighted in blue. The cluster timeline (bottom left) provides
a detailed timeline of the submission order. A plagiarism graph (top right) shows a visual
representation of the current cluster. The cluster heatmap (bottom right) visualises pairwise
similarities between submissions in this cluster.

67

Chapter 4. User Interface and User Experience design

Cluster heatmap

The cluster heatmap, shown in the bottom right, visualises all pairwise
similarities using a heatmap visualisation. A square cell indicates
the similarity between the submissions corresponding to its row and
column, a darker colourmeaning a higher similarity. The visualisation
is symmetric around the diagonal, with cells on the diagonal itself
representing 100% similarity between a submission with itself.

The heatmap in figure 4.5 reveals that the first submitter (Antonin) only
appears to have a high similarity with Theodore Lovehood and Mary
Crabbe. Other submissions in this cluster have very high pairwise
similarities. This could indicate that Antonin obfuscated their original
solution before sharing it with a colleague, after which that solution
spread throughout the population with only minor adjustments.

4.6. Pairs

The primary output of Dolos s̓ source code similarity detection pipeline
is a collection of fingerprints shared among the submissions under ana‐
lysis. A pair aggregates all information about the fingerprints shared
between two submissions, facilitating further inspection to determine
whether plagiarism has occurred. This pair contains all information
needed to compute the shared fragments: the actual code blocks pro‐
ducing identical fingerprints. Three metrics summarise the shared
fingerprints between a pair to indicate potential plagiarism: total over‐
lap, similarity, and longest fragment:

• Total overlap: represents the total number of fingerprints shared
between a pair, providing an absolute measure of the amount of
shared code.

• Similarity: indicates the fraction of shared fingerprints relat‐
ive to the total number of fingerprints in the two submissions,
revealing how similar the two files are.

• Longest fragment: denotes themaximumnumber of consecutive
fingerprints shared between the submission pair, calculated as
the longest common subsequence (section 3.3.3)

Wegivemoredetails onhow thesemetrics are calculated in section 3.3.

The View by pairs page lists all pairs from the current analysis in a
paginated table (figure 4.6). Each row displays the two submissions
in the pair, along with three similarity metrics: similarity, longest

68

4.6. Pairs

Figure 4.6. View by pairs page listing all pairs in a sortable and searchable table. The table columns
include both submissions included in this pair, together with the three similarity metrics.

fragment, and total overlap. Users can sort the table by any metric, as
each metric provides different insights. Clicking on a row directs the
user to the comparison page.

4.6.1. Pairwise comparison

The pairwise comparison page, or comparison page for short, allows
direct comparison of two submissions by showing their source files
side by side (figure 4.7). Instructors can examine the source files for
clues of plagiarism. Two editor modes highlight either differences
(diff mode) or similarities (match mode). The Dolos UI selects the
default mode based on the current similarity percentage. In addition
to the code editor, the page presents the three similarity metrics and
any supporting information available, such as submission time and
label.

69

Chapter 4. User Interface and User Experience design

(a) Pairwise matches

(b) Pairwise diff

Figure 4.7. Screenshots of the comparison page with its two editor modes: matches and diff. This
screenshot shows a suspicious pairwith 100%similarity from theπ‐ramidal constants evaluation
dataset. The two source files are nearly identical, their only difference is the presence of some
comments.

70

4.6. Pairs

Pair matches

The matches mode of the editor on the comparison page (figure 5.2a)
highlights code fragments sharing identical fingerprints. Hovering
over and selecting highlighted code blocks in one file highlights the
correspondingmatched code blocks in the other file. Themode demon‐
strates which code fragments Dolos deems similar between the two
source files.

This mode is automatically selected when the current pair s̓ similarity
falls below 80%. For high similarity percentages, the source files share
most of their code, and in extreme cases, the entire code may be
highlighted as one block, which is less meaningful. This mode is most
effective for lower similarity percentages, immediately highlighting
the corresponding parts when only a small portion of a source file is
plagiarised.

As this mode uses fingerprints to construct the matching code blocks,
and these fingerprints are designed to resist obfuscations, it is not
ideal revealing which obfuscations students have applied to evade
detection.

The scrollbar of this mode also serves as a minimap of the source
code, indicating which parts of the source files are highlighted. This is
mostly useful when the source files are long and do not fit within the
viewport.

Pair diff

The diff mode employs a code differ to highlight exact differences
between the two source files in the pair. This code differ highlights the
differences by showing how to go from the code of one file to the other.
One side highlights code fragments in red that need removal, while
the other side highlights those fragments in green that need addition.
When only parts of a line change, the entire line is highlighted in a low
intensity, with the changed parts fully highlighted.

The diff mode is automatically selected when similarity exceeds 80%.
For such pairs, it is more meaningful to focus on differences rather
than similarities. As this mode operates on the exact code rather
than fingerprints, student obfuscations becomemore apparent: added
comments or renamed variables are immediately visible. Like the
matches mode, the scrollbar serves as a minimap to indicate where
the files differ.

71

Chapter 4. User Interface and User Experience design

Figure 4.8. View by submission page listing the submissions in the current collection.

4.7. Submissions

One of the angles Dolos provides to inspect a collection of source files
from, is from the perspective of a single submission. Even though
the primary output of the source code plagiarism detection pipeline is
pairwise similarities ‐ it is much more intuitive for instructors to in‐
spect single submissions. The Dolos UI provides the View by submission
page with a searchable table listing all submissions included in the
current collection as rows (figure 4.8). This table includes a submis‐
sions̓ label, timestamp, total lines of code in the source file, and the
highest similarity — the similarity of the nearest‐neighbor submission
by similarity.

72

4.8. Evolution of the UI

4.7.1. Submission detail

Clicking on a row of the submission list table brings the user to the
submission detail page (figure 4.9). This page provides detailed inform‐
ation on the current submission and its relation to other submissions.
A card in the top left displays known metadata about this submission:
the label, file name, and submission timestamp. A compare table (top
right) lists all other submissions, ordered by pairwise similarity with
the current submission. This table includes all information included
in the View by submission table, and adds an indication on the cluster:
whether the other submission is in the same cluster (filled icon), an‐
other cluster (outlined icon), or not in any cluster (no icon). A link to
compare this submission with the other provides quick action to the
pairwise comparison page (section 4.6.1).

If the current submission is included in a cluster, this page also fea‐
tures the cluster timeline (center left) and cluster graph (top right)
from the corresponding cluster detail page section 4.5.1. A similarity
histogram and longest fragment histogram (bottom right) highlight
how the metrics of the current submission relate to other submissions.
These histograms allow the instructor to see whether the similarity or
longest fragment value is abnormally high. The bottom left of the sub‐
mission detail page features the source file contents of this submission
in a code viewer.

4.8. Evolution of the UI

We did not build Dolos UI overnight; it has undergone multiple incre‐
mental iterations, each enhancing the current state. To illustrate the
UI s̓ evolution, we briefly explore its development here. Dolos began
in the summer of 2019 as a script processing data from standard input
(stdin) and writing hashes to standard output (stdout). From this
simple script, the project evolved into a full‐fledged dashboard for
similarity analysis.

This section outlines the most important milestones of the Dolos UI,
along with their release versions. For a comprehensive list of releases,
including features, bug fixes, and other changes, visit the Dolos release
page on GitHub4.

4github.com/dodona‐edu/dolos/releases

73

https://github.com/dodona-edu/dolos/releases

Chapter 4. User Interface and User Experience design

Figure 4.9. Submission detail page featuring a list of similar other submissions in the top left.
This page includes the cluster timeline and cluster graph from the corresponding cluster detail
page section 4.5.1. Additionally, a similarity histogram and longest fragment histogram in the
bottom right visualise how the current submissions̓ metrics compare to other submissions
under analysis. The bottom left displays the current submissions̓ code.

74

4.8. Evolution of the UI

4.8.1. TUI before v1.0.0

Development to make Dolos user‐facing began in March 2020 with the
creation of a CLI. The first proper UI included in Dolos was a terminal
user interface (TUI), as shown in figure 4.10. This TUI outputs analysis
results to the console as a list of all file pairs, including their similarity
metrics. When the input dataset contains a single file pair, or the
user explicitly adds the --compare CLI flag, the TUI also prints the
matching code fragments for each file pair.

Chapter A, which describes the CLI options, details further configura‐
tions for the TUI, such as setting a sorting order and limiting the output
results. The Dolos CLI still uses the TUI as the default output format,
which has changed very little since the v1.0.0 release.

4.8.2. v1.0.0 – A web UI for Dolos

Version v1.0.0, released in the summer of 2021, introduced an ac‐
tual web UI for Dolos, as shown in figure 4.11. This initial UI featured
three pages: the pairs listing (figure 4.11a), the comparison page (fig‐
ure 4.11b), and the plagiarism graph (figure 4.11b).

This initial UI included a few features that are no longer present. The
comparison page featured a toggleable list of shared blocks (now called
fragments) on the right side. This list displayed the fragments and
their length in fingerprints, allowing users to iterate over them while
highlighting the corresponding code in the editor. Additionally, users
could filter out fragments with fingerprints below a threshold count
(minimum block length). We removed this functionality because users
need a deep understanding of Dolos s̓ underpinnings to utilise it ef‐
fectively. Consequently, we noticed that users rarely used this feature,
leading to its removal to reduce visual complexity.

Another feature in v1.0.0 allowed users to set a status for each sub‐
mission pair. This status could be one of four options: unreviewed
(default), innocent, suspicious, and certain plagiarism. However, the UI
did not store this status persistently, meaning users would lose their
labelling efforts upon refreshing the page. Moreover, four statuses
were too limited to capture the nuances of plagiarism detection. Both
limitations led to the elimination of this feature.

75

Chapter 4. User Interface and User Experience design

(a) CLI output listing all file pairs including their similarity metrics.

(b) CLI output with a highlighted comparison of the similar code fragments of a single pair.
The red list of tokens is the reconstructed list of syntax tokens that the two source files
have in common. The side‐by‐side comparison shows the code snippets corresponding to
the similar tokens and highlights the exact code in green.

Figure 4.10. Screenshots of TUI provided by the Dolos CLI, using some sample JavaScript files as
input. The comparison is shown when two files are analysed, or when the user explicitly adds
the --compare flag to the CLI evocation. This TUI was the first proper interface included in
Dolos.

76

4.8. Evolution of the UI

(a) Pairs page listing all submission pairs in a table, along with the pairsʼ
similarity metrics.

(b) Comparison page allowing close inspection of a single submission pair.

(c) Plagiarism graph visualising submissions as nodes, and connecting nodes
when their submissions share a similarity above the given threshold.

Figure 4.11. Screenshots of the Dolos web UI version v1.0.0, featuring a pairs page listing all file
pairs with their similarity metrics (figure 4.11a), a comparison page to study the differences
between one pair in detail (figure 4.11b), and a plagiarism graph (figure 4.11c).

77

Chapter 4. User Interface and User Experience design

4.8.3. v1.6.0 – Clusters and files

During the academic year 2021–2022, Dolos underwent significant
experimentation with the help of two students working on their mas‐
ter s̓ thesis. This effort led to major improvements in the source code
plagiarism detection pipeline, and the addition of new pages and visu‐
alisations to the Dolos UI. Version v1.6.0, released in June 2022, in‐
corporated these changes, as shown in figure 4.12.

This release introduced afirst versionof anoverviewpage (figure 4.12a),
featuring a similarity histogram. The overview page also provided
information about the current report and offered quick links to the pla‐
giarism graph and the new file analysis page. Additionally, this release
added semantic analysis to the Dolos UI comparison page, detailed in
section 7.3.2.

File analysis

The file analysis page (figure 4.12b) served as the predecessor for
both the submission list and submission detail pages described in
section 4.7. The concept behind this page was to order all files ac‐
cording to an interestingness metric, which combined the three major
metrics into one. Each file card displayed a histogram indicating its
relative similarity, longest fragment, or total overlap metric, based
on the most important metric as deemed by the interestingness score.
Each card provided basic information about the file and linked to the
relevant file pair for further inspection.

However, this page had some limitations. Each file appeared only once,
with a link to compare it with the most similar other file. Files with
multiple suspicious links to other submissions would thus reveal only
one suspicious connection, hiding the others. Additionally, the use of
cards instead of a quickly scrollable table or list made searching for
suspicious files more challenging. Despite these limitations, this page
marked the beginning of a shift in focus from pairs to submissions.

Clusters

Version v1.6.0 formally introduced the concept of clusters in the
UI by adding a list of clusters positioned below the plagiarism graph
(figure 4.12c). This list provided an alternative,more structured view of
the content displayed in the plagiarism graph by sorting the clusters by
size. Each cluster in the list was collapsible, and featured three cluster

78

4.8. Evolution of the UI

(a) Overview page featuring a similarity distribution histogram.

(b) File analysis page listing all files in a card with a histogram based on the most significant
metric from similarity, longest fragment, or total overlap.

(c) Cluster list shown below the plagiarism graph. Circles including submission authorʼs
initials give an indication on the clusterʼs contents.

Figure 4.12. Screenshots of the new pages in version v1.6.0 of the Dolos UI.

79

Chapter 4. User Interface and User Experience design

visualisations still present in the current UI: a timeline (figure 4.13a),
a graph (figure 4.13b), and a heatmap (figure 4.13c).

However, this page suffered from a discoverability issue, as it was posi‐
tioned below the plagiarism graph, it required users to scroll down to
find it. Although we added an arrow to address this, user studies indic‐
ated that the page could still go unnoticed. This ultimately led to the
introduction of the separate cluster pages described in section 4.5.

4.8.4. v2.0.0 – Major UI redesign

During the summer of 2022, after organising a summer course on
UI/UX design and conducting user studies (described in section 4.1),
we redesigned the Dolos UI following proper design fundamentals.
These significant changes warranted a major version bump, leading to
the release of Dolos v2.0.0 in October 2022.

This release introduced many of the pages currently present in the UI:
a redesigned overview page (section 4.3), the submission list and detail
page (section 4.7), the cluster list and detail page (section 4.5), and a
redesigned comparison page (section 4.6). Additionally, numerous
smaller features were added, optimised, or significantly improved.

4.8.5. Further development

Since v2.0.0, the Dolos UI has remained relatively stable. With the UI
reaching a point of maturity, efforts shifted towards enhancing Dolos s̓
UX, performance and code quality. Although this resulted in only
minor visual changes, improved responsiveness and stability deliver a
better experience when using the dashboards.

v2.2.0 – Dolos web server

One of the most significant UX issues we observed, was with users
executing Dolos through its CLI. Installing and running Dolos is a tech‐
nical process that requires familiarity with the command line. Not all
instructors possess this familiarity, and even those who do sometimes
encounter installation errors that prevent them from running Dolos.

To address this, we aimed to provide an alternative that does not re‐
quire local installation by enabling Dolos to run from a browser. After

80

4.8. Evolution of the UI

(a)Cluster timeline placing each submission in this cluster on a timelinewhen
submission timestamps are available.

(b) Cluster graph illustrating the interconnected submissions in this cluster
as a force‐directed graph.

(c) Cluster heatmap visualising pairwise similarities between submissions in
a cluster.

Figure 4.13. Cluster visualisations add in Dolos v1.6.0. These visualisations served as prede‐
cessors for visualisations described in section 4.5.

81

Chapter 4. User Interface and User Experience design

iterating through several prototypes, we introduced a publicly avail‐
able Dolos web server and web Application Programming Interface
(API) in May 2023 when releasing Dolos v2.2.0.

v2.6.0 – External integrations

With a public API and web server in place, all the necessary building
blocks were available to integrate Dolos as an external service into
online learning environments. Release v2.6.0, introduced in April
2024, added the final missing piece to complete integration with the
Dodona exercise platform5: a loading page to display while reports are
being analysed on the Dolos web server.

v2.9.0 – Qualitative improvements

The latest version of Dolos as of writing, v2.9.0 released in Janu‐
ary 2025, enhanced the comparison page by highlighting parts of the
code that the source code similarity detection pipeline ignores. This
includes explicitly provided template code, automatically detected
template code, and comments.

5dodona.be

82

https://dodona.be

Chapter 5.

Implementation

Previous chapters of this dissertation described the theoretical and
conceptual foundations underpinning the Dolos source code simil‐
arity detection pipeline. The research field of source code similarity
detection has a strong focus on building prototypes for studying the
algorithms. The review by Novak et al. (2019) notes this focus on pro‐
totypes:

In spite of the large production of tools in recent years, most of
the tools are not available to the public, they are used only by
the authors that developed them and are mentioned in only one
article. We note that 65 of these tools are not compared in the
literature, so the quality is questionable.

With Dolos, we wanted to develop a tool for broad adoption. Other
research projects often focus on algorithms or techniqueswhere imple‐
mentation is only an afterthought. In this research project, the main
result is the implementation of a useful source code similarity detec‐
tion engine. The result is a complete system for similarity detection
consisting of different components, each catering to different users:
instructors, power‐users, developers and other researchers.

This chapter describes the software architecture of Dolos and the im‐
plementation of eachmodule. We start by explaining the general struc‐
ture and software design in section 5.1, listing the different modules
and their role within Dolos. The chapter then proceeds by describing
the most important modules in this system.

5.1. Software architecture

Dolos is a system comprising of multiple interconnected components.
Figure 5.1 illustrates the key components of Dolos. We will first give a

83

Chapter 5. Implementation

Dolos webserver

Figure 5.1. Diagram of the main compenents in the Dolos ecosystem and their
relationships. Some components are usable in isolation, as shown by the
three users interacting with the components.

high‐level overview of these components before exploring their imple‐
mentation details.

The core of the similarity analysis pipeline is dolos-cli (section 5.4),
a command‐line interface (CLI) that ingests source code files and
presents the similarity analysis results. dolos-cli leverages dolos-
lib to perform the similarity analysis (section 5.3.2). dolos-lib
retrieves source code files from the filesystem, parses them using
dolos-parsers (section 5.2), subsequently sending their syntax tree
to the algorithms encapsulated within dolos-core (section 5.3.1).
The dolos-cli can present the results through an interactive Web
user interface (UI) providedbydolos-web (section 5.5). This interface
relies on dolos-core to execute segments of the similarity detection
pipeline on demand, thereby avoiding lengthy precomputation during
analysis.

dolos-cli, dolos-lib, and dolos-parsers operate within the
Node.js JavaScript runtime to interface with the host system, enabling
file system access, network connectivity, and binary add‐ons. Con‐
versely, dolos-core is designed to function in browser environments
devoid of the Node.js Application Programming Interface (API), hence
it does not depend on the Node.js runtime.

The dolos-apimodule (section 5.6) provides a Hypertext Transfer
Protocol (HTTP) JavaScript Object Notation (JSON) API to initiate a

84

5.1. Software architecture

similarity detection analysis and store its results. This API server runs
the analysis jobs by invoking the dolos-cli in a background job. The
dolos-web module can be built in server mode to interact with the
JSON API of dolos-api. Together, dolos-web and dolos-api form
the Dolos webserver.

This modular system supports various user needs. Instructors typic‐
ally use the Dolos webserver for convenience, as it requires no local
installation. Advanced users seeking control over the analysis or in‐
tegration into grading scripts can use the Dolos CLI. Developers can
embed Dolos s̓ source code similarity detection capabilities into other
applications by directly interfacing with the dolos-lib library.

5.1.1. Choice for TypeScript

Dolos uses TypeScript1 as its main programming language. TypeScript
adds statical typing to JavaScript to improve resilience against bugs. It
transpiles to JavaScript, so there is full compatability with JavaScript
itself.

The choice for TypeScript comes from its portability and popularity.
Once transpiled to JavaScript, it can run in a wide range of environ‐
ments: JavaScript is the only language to natively run within browser
contexts, and runs directly onhost systemswithin theNode.js2 runtime
environment. JavaScript offers a diverse ecosystem of software lib‐
raries published on NPM3 and keeps rapidly evolving. Because of its
presence in browsers, the JavaScript runtime is heavily optimised,
which keeps its runtime reasonably fast even for algorithmically de‐
manding programs.

According to GitHub and Stack Overflow, JavaScript was the most pop‐
ular programming language for 10 years, with GitHub reporting that
Python just overtook JavaScript last year. Since its first release in 2012,
TypeScript has gained popularity. In 2024, both Stack Overflow and
GitHub placeTypeScript in third positionwhen counting programming
language popularity (GitHub 2024; Stack Overflow 2024).

Using amore popular programming language increases the chances of
developers contributing to the project, as they already know that pro‐
gramming language. Because of its popularity, JavaScript and Node.js
have high‐quality tooling available to help with development.

1www.typescriptlang.org
2nodejs.org
3npmjs.org

Stack Overflow
technically
reports
TypeScript in fifth
place, but
HTML/Cascading
Style Sheets (CSS)
and SQL which
precede
TypeScript are not
really
programming
languages.

85

https://www.typescriptlang.org
https://nodejs.org
https://npmjs.org

Chapter 5. Implementation

5.1.2. Repository structure

The repository hosting the Dolos source code can be found on GitHub4.
All components related to Dolos are centralised in thismonorepository
using theGit version control system. Themain components ormodules
of Dolos each have their own folder in the root of the repository:

parsers containing the officially supported parsers shipped with Dolos,
described in section 5.2.

core provides the core algorithms of the source code similarity ana‐
lysis pipeline, described in section 5.3.1.

lib re‐exports the core algorithms and adds Node.js code for read‐
ing from the filesystem and running the parsers, described in
section 5.3.2.

cli implements the command‐line interface and includes code to
serialise reports and launch theWeb UI, described in section 5.4.

web contains the graphical user interface as a single‐page web applic‐
ation, described in section 5.5

api a straightforward API server to provide the Dolos web server
running at dolos.ugent.be/server described in section 5.6.

docs thedocumentationwebsite hosted atdolos.ugent.be, described
in section 5.7.1.

samples a collection of sample source code files for each supported pro‐
gramming language, described in section 5.7.2.

In addition to these components, the repository contains files facilitat‐
ing the development of Dolos. Configuration files in the root direct‐
ory ensure a shared, consistent code style between modules. To en‐
hance the process of running, building and developing, Dolos provides
files for Docker containers (section 5.7.3) and Nix environments (sec‐
tion 5.7.4).

5.1.3. Continuous Integration and Deployment

AsDolos has grown to a sizeable systemof interdependent components
that need to be executed in a wide variety of environments, it is crucial
to ensure that each component functions as expected. Where relevant,

4github.com/dodona‐edu/dolos

86

dolos.ugent.be/server
dolos.ugent.be
https://github.com/dodona-edu/dolos

5.1. Software architecture

each component includes unit tests and integration tests to validate
that the components are functioning properly.

Each time a new commit is pushed to the GitHub repository, a new job
is launched using GitHub Actions to build and test each component. A
total of 111 tests in dolos-lib and dolos-core, executed across the
latest three versions of Node.js, helps identify issues within the JavaS‐
cript libraries. Additionally, the dolos-api test suite includes 16 tests,
encompassing a full similarity analysis. This comprehensive test suite
enables Dolos developers to swiftly identify bugs and regressions.

There is an additional workflow that checks whether all components
can be packaged and released without errors. However, this additional
workflow is computationally expensive, easily taking up more than 10
minutes per run, compared to the standard workflow finishing in 3
minutes and 30 seconds on average. Enabling this workflow for every
push would delay the development cycle significantly. This validation
workflowwill thus only runwhen anewcommit is pushed to themaster
branch. This only occurs when a pull request is merged or before a
new release is published.

Version numbering

The NPM packages dolos-core, dolos-lib, dolos-parsers fol‐
low the semantic versioning scheme. Each package has a version num‐
ber in the formatMAJOR.MINOR.PATCH.We increase the version num‐
ber of a package corresponding to how that package changes by this
new release. A change of the MAJOR version number indicates an in‐
compatible API change (a breaking change), a MINOR version increase
indicates new functionality, and a PATCH version bump indicates a
bug fix.

The other packages and container images are primarily user‐facing
(the CLI, web interface, and web server). As these packages are more
user‐facing, the concept of a breaking change is not really applicable.
Hence, we apply a less strict scheme of semantic versioning where
we only increase the MAJOR version number when Dolos has received
major new features. The latest increase of the major version was
after the user interface redesign in October 2022. We use this version
number as the primary version of the Dolos repository.

87

Chapter 5. Implementation

Release flow

We trigger a new release by pushing a commit tagged with a new ver‐
sion number. The continuous integration will automatically execute
the following tasks in a GitHub Action workflow:

• Create a new entry on the releases page5 on GitHub that includes
a short description of the changes.

• Publish dolos-parsers, dolos-core, dolos-lib, dolos-
cli, and dolos-web to the NPM package repository.

• Publish thedolos-cli,dolos-web, anddolos-api container
images to the GitHub Container Registry (GHCR) container re‐
pository.

• Run the analysis on the demo datasets and publish them to the
demo page on the website6.

5.1.4. Software Licence

We licensed the code under the Massachusetts Institute of Technology
(MIT) licence which permits anyone to use, distribute and modify the
source code free of charge when preserving this licence and copyright
notice. There is no distinction between private and commercial use,
so companies can provide paid services using Dolos without legal
ramifications. The licence even permits re‐licensing and re‐selling
the software in this repository when retaining the original licence
and copyright notice. This means that Dolos is free and open‐source
software (FOSS), and it has been from the start.

5.2. Parser module

One of the main features of Dolos is support for many programming
languages. We achieve this by building on top of Tree‐sitter7, a parser
generator tool and incremental parsing library (Brunsfeld et al. 2024).
There are 24 languageswith official Tree‐sitter parser implementations,
and an ever‐growing list of 467 parsers made by the community8.

5github.com/dodona‐edu/dolos/releases
6dolos.ugent.be/demo
7tree‐sitter.github.io/tree‐sitter
8You can find a list of existing parsers here: github.com/tree‐sitter/tree‐
sitter/wiki/List‐of‐parsers

88

https://github.com/dodona-edu/dolos/releases
https://dolos.ugent.be/demo
https://tree-sitter.github.io/tree-sitter
https://github.com/tree-sitter/tree-sitter/wiki/List-of-parsers
https://github.com/tree-sitter/tree-sitter/wiki/List-of-parsers

5.2. Parser module

1 import { Parser } from "tree-sitter";
2 import { JavaScript } from "tree-sitter-javascript";
3

4 const parser = new Parser();
5 parser.setLanguage(JavaScript);
6

7 const sourceCode = 'let x = 1; console.log(x);';
8 const tree = parser.parse(sourceCode);

Listing 5.1. JavaScript code snippet that shows how to parse a string of code
into a Tree‐sitter concrete syntax tree. We first initialise the parser with
the desired language object, after which we call the parse‐method on a
string containing source code to receive the syntax tree. To parse a different
language, change the imported language object and pass that to the parser
upon initialisation. Since Tree‐sitter binds with compiled binaries using
the Node‐addon‐API, this code will only work in Node.js environments.

The selection of Tree‐sitter is based on its widespread adoption and
active maintenance. During development, we briefly explored other
alternatives:

• vscode-textmate9: a tokeniser for TextMate grammars used
by the popular integrated development environment (IDE) Visual
Studio Code. This parser runs using WebAssembly (WASM).

• highlight.js10: A widely‐used syntax highlighter written in
pure JavaScript.

• Prism11 and its fork reprism12: both are pure JavaScript high‐
lighting libraries, although neither project is activelymaintained.

However, these alternatives primarily focus on syntax highlighting and
do not provide ergonomic access to the underlying syntax tree, which
is crucial for our needs. In addition, all three of them are regex‐based
parsers that cannot fully parse context‐free grammars, in contrast to
the canonical LR parsers generated by Tree‐sitter (see section 3.1.1).

Tree‐sitter generates parsers in the C programming language that are
meant to be compiled on the system they will be executed on. Luckily,
it also generates bindings for other programming languages, including
Node.js. The provided API is quite simple and is the same for each
language, as demonstrated in listing 5.1.

9github.com/microsoft/vscode‐textmate
10github.com/highlightjs/highlight.js
11github.com/PrismJS/prism
12github.com/tannerlinsley/reprism

89

https://github.com/microsoft/vscode-textmate
https://github.com/highlightjs/highlight.js
https://github.com/PrismJS/prism
https://github.com/tannerlinsley/reprism

Chapter 5. Implementation

This uniform API allows Dolos to be programming language‐agnostic.
If there is a parser for a programming language, Dolos supports that
language.

5.2.1. Vendoring parsers

Tree‐sitter provides access to numerous parsers that share a common
API. However, each parser is an independent project, maintained and
published separately from others. Adding support for a new program‐
ming language required including it as a separate dependency via NPM.
Unfortunately, not all Tree‐sitter parsers share the same development
pace, and some are not published at all, particularly the community‐
maintained ones. As Dolos expanded its collection of officially sup‐
ported parsers, the frequency of compatibility issues between parsers
using different Tree‐sitter versions increased.

The dolos-parsersmodule solves this problem by bundling Tree‐
sitter parsers for major programming languages into a single package.
This approach is similar to vendoring, where third party software is
copied instead of being managed as a dependency by a package man‐
ager. Rather than copying the parsers, Dolos includes their repository
within its own repository using Git submodules. This process simpli‐
fies the process of receiving updates for these parsers. Additionally,
if Dolos needs a custom change (e.g. fixing a bug in a parser), it can
readily replace the submodule with a forked repository containing the
desired changes.

Each parser has a configuration file for node-gyp, the Node.js build
tool used to compile native add‐on modules for multiple platforms.
The package configuration specifies the source code files required
by a binary add‐on, which node-gyp then compiles during package
installation. To streamline the build process, dolos-parsers em‐
ploys an overarching node-gyp configuration file that references the
configurations of all vendored parsers. The result is a single JavaScript
package with node bindings for each parser.

Having a module that aggregates all parsers avoids conflicts between
parsers using different Tree‐sitter versions. Dolos is now much less
reliant on themaintainers of individual parsers to publish new releases
once an update or fix is available. In addition, adding a new parser is
also much easier and faster.

However, supporting a new parser comes with a cost. Upon installa‐
tion, this module builds these parsers for the host system, so dolos-
parsers needs to include the parser code. Some parsers can take up

90

5.3. Software libraries

a sizeable amount of disk space. Adding a new parser also increases
the build time. dolos-parsers currently includes 19 parsers. The
module uses 237 MB for the code, 19 MB for the build artefacts, and it
takes a bit more than a minute to build the package.

5.3. Software libraries

Initially, Dolos started as one NPM package that combined the library
and CLI. Later on, when developing the Web UI, there was a need
for compartmentalising the different components of Dolos. We split
off dolos-lib from the original package to provide this encapsu‐
lation. This code was still highly dependent on Node.js to perform
IO and run Tree‐sitter and could not easily run in browser environ‐
ments. Since the web UI of Dolos needs access to the algorithms of the
similarity detection pipeline, we moved the core algorithms to a new
package dolos-core. These two libraries make it possible for other
developers to add similarity detection to custom software packages.

5.3.1. dolos-core

The dolos-core package includes most of the algorithms described
in chapter 3. This package is free from runtime dependencies, ensur‐
ing that the JavaScript it provides is compatible with any JavaScript
runtime. This flexibility enables the use of algorithms in both the
Dolos CLI and dolos-lib within the Node.js JavaScript runtime, as
well as using the algorithms in the web UI where the Node.js API is
unavailable.

We have spent considerable effort to speed up the implemented al‐
gorithms, as they make up the core of the matching engine that drives
the similarity detection. Chapter 3 discusses most algorithmic optim‐
isations. There are some optimisations specific to our implementation,
which we will discuss below:

Efficient hashing with JavaScript’s number type

The built‐in primitive number data type provided by JavaScript can be‐
have a bit odd compared to other programming languages. A number
represents a double‐precision 64‐bit floating point number according
to the IEEE 754 format. Calculations using floating‐point numbers can
provide unexpected results and are often slower than using integers.

91

Chapter 5. Implementation

While JavaScript does provide some classes to handle integer numbers
such as BigInt and Int8Array, these are not primitives and lack the
optimisation associated with primitives.

Under the hood, JavaScript engines optimise the behaviour of the
number primitive and try to use integer arithmetic when possible. The
V8 Engine used by Node.js, assigns an elements kind to each value or
array. There is a whole range of element kinds, but themost important
ones are small integers (SMI), double‐precision floating‐point num‐
bers and regular elements (objects). Each elements kind has its own set
of optimisations, and the SMI elements will use fast integer arithmetic.
But this elements kind of values and arrays is not static. Whenever a
value changes to something that is no longer representable as the cur‐
rent elements kind, it transitions its elements type. Once an element
transitioned to a less efficient kind, it cannot transfer back and will
use the less‐efficient operations.

To implement efficient hashing algorithms, it is imperative to use in‐
teger arithmetic. One goal of a hashing algorithm is to avoid collisions
as much as possible. This implicates using as many bits of an integer
as possible — in other words: each bit should have an equal probability
to be 0 or 1.

Returning to JavaScript s̓ number type, we aim for our hash functions
to use as many bits as possible without surpassing the maximum value
representable by the significand, which stores the significant digits of
the floating‐point number as an integer. Exceeding this value would
cause the engine to convert the number to a double‐precision floating‐
point format. According to the IEEE standard, 64‐bit double‐precision
floating‐point numbers consist of one sign bit, 11 exponent bits and
52 bits dedicated to its significand. Therefore, the maximum repres‐
entable value as an integer, is 252 − 1. In order to ensure our hashing
function is using integer arithmetic under the hood, we thus need
to ensure that a value in our hashing algorithm never exceeds this
maximum representable value.

Section 3.2 describes the two polynomial hashing function Dolos lever‐
ages: a polynomial rolling hash with an infinite window to hash indi‐
vidual tokens (listing 5.2), and a polynomial rolling hashwith awindow
k to hash k subsequent tokens (listing 5.3). The latter hash function is
also used int the Rabin‐Karp string search algorithm (Karp and Rabin
1987). Each of these polynomial hash functions have two important
constants to pick: the multiplier a and the modulusm. Within Dolos s̓
implementation, we selected these values to ensure numbers remain
within the maximum safe integer range:

By using the sign
bit, we have
253 − 1
representable
integers. Dolos
only uses the
positive integers,
as one extra bit
doesnʼt justify the
added complexity.

92

5.3. Software libraries

1 readonly mod: number = 33554393;
2 readonly base: number = 747287;
3 public hashToken(token: string): number {
4 let hash = 0;
5 for (let i = 0; i < token.length; i++) {
6 hash = ((hash + token.charCodeAt(i)) * this.base) %

this.mod;↪→

7 }
8 return hash;
9 }

Listing 5.2. The code currently used to hash tokens found in the TokenHash‐
class, implementing a Rabin‐Karp rolling hash with an infinite window.
The base (multiplier aT) and mod (m) values are carefully chosen as not to
exceed the maximum safe integer number of a double‐precision floating‐
point number to maintain efficient integer arithmetic in JavaScript.

• The modulus (m) determines the largest value of the hashes and
thus the numbers used in the hashing function. Both the token
hash and the rolling hash use the same constant: the largest
prime number with 26 bits. This ensures that multiplying two
values within this range will not exceed 52 bits.

• The multiplier (aT) of the token hash (listing 5.2) aims to distrib‐
ute the used bits as widely as possible. Each character value is
multiplied with this multiplier, and we aim to distribute the used
bits as widely as possible within the available range provided by
the modulus. Assuming that characters values in token names
are less than 128, we chose aT to be the largest prime such that
127 · aT < m.

• Themultiplier(aR) of the rolling hash (listing 5.2) serves a similar
function to the token hash, but we can already assume that input
values are spread out evenly over the available range dictated
by the modulus. This multiplier needs to be different to the
multiplier used by the token hash, so we picked the largest prime
number with 22 bits.

The rolling hash function also uses modular exponentiation to calcu‐
late−akR mod m once during its initialisation, so we implemented the
algorithm presented by Schneier (1995) that takes care not to overflow
the modulus.

93

Chapter 5. Implementation

1 public class RollingHash {
2 readonly mod: number = 33554393;
3 readonly base: number = 419430;
4

5 constructor(
6 public readonly k: number
7) {
8 // −akR mod m
9 this.maxBase = mod - modPow(this.base, this.k, this.mod)

;↪→

10 this.memory = new Array(this.k).fill(0);
11 }
12

13 public nextHash(token: number): number {
14 this.hash = (
15 this.base * this.hash + \
16 token + \
17 this.maxBase * this.memory[this.i]
18) % this.mod;
19 this.memory[this.i] = token;
20 this.i = (this.i + 1) % this.k;
21 return.this.hash;
22 }

Listing 5.3. Excerpt from Dolos s̓ RollingHash‐class, implementing a Rabin‐
Karp rolling hash with a finite window k. This hash function uses the same
mod value as theTokenHash implementation from listing 5.2, but a different
base that assumes the input hashes are already using all bits. Both values
still safeguard that numbers do not to exceed the maximum safe integer
number of a double‐precision floating‐point number to maintain efficiënt
integer arithmetic in JavaScript.

94

5.3. Software libraries

1 // Determine the maximum overlap using the spread operator
2 const maximumOverlap1 = Math.max(...pairs.map(s => s.overlap));
3

4 // Determine the maximum overlap using a conventional loop
5 let maximumOverlap2 = 0;
6 for (const pair of pairs) {
7 maximumOverlap2 = Math.max(maximumOverlap2, pair.overlap);
8 }

Listing 5.4. Two ways to find the maximum overlap in a list of pairs: the first
using the JavaScript spread syntax and the second using a conventional
for loop. The spread syntax expands all values as arguments to the func‐
tion call it is used in, internally pushing the values on the call stack. In a
benchmark with 105 pairs, the latter is more than twice as fast as the spread
syntax. At 106 pairs, the spread syntax causes a RangeError: too many
function arguments.

Avoid the JavaScript spread syntax (...)

ECMAScript 6, released in 2015, introduced the spread syntax that
allows iterables to be expanded in function calls or array literals. This
syntax allows for elegant expressions that are often shorter than using
conventional loops, as shown in listing 5.4. Unfortunately, this syntax
comes with one major drawback: as it expands the elements in the
function calls, it actually pushes them on the call stack. As this stack
size is limited, this can result in an error when the number of ele‐
ments in the iterable exceeds a certain threshold. This syntax can also
be slower than other approaches, the execution time of the example
shown in listing 5.4 is double that of a conventional loop.

Dolos initially used this spread syntax quite a lot, which resulted in
crashes when analysing large datasets with 1000 submissions. By re‐
placing this syntax with other alternatives, the call stack size no longer
limited the supported size of datasets. This particular change did, how‐
ever, not cause a measurable change in runtime of the Dolos similarity
detection pipeline.

5.3.2. dolos-lib

Since dolos-core is used by dolos-web and must operate within
browser environments, it cannot have access to platform‐specific APIs.
Consequently, it lacks functionality to read or parse source code files.
dolos-lib is a separate library that includes all these capabilities, en‐
abling it to fully execute the source code similarity detection pipeline

95

Chapter 5. Implementation

1 import { Dolos } from "@dodona/dolos-lib";
2

3 const files = [
4 "sample.js",
5 "copied_function.js",
6 "another_copied_function.js",
7 "copy_of_sample.js",
8];
9

10 const dolos = new Dolos();
11 const report = await dolos.analysePaths(files);
12

13 for (const pair of report.allPairs()) {
14 for (const fragment of pair.buildFragments()) {
15 const left = fragment.leftSelection;
16 const right = fragment.rightSelection;
17 console.log(`Match between ${left} and ${right}`);
18 }
19 }

Listing 5.5. Example of using the Dolos class from the dolos-lib package
to perform similarity detection on a list of files. The library will automat‐
ically detect the programming language of the submissions and select the
corresponding parser. The resulting Report object will contain the results
of the similarity detection. In this example, the code will print all similar
code fragments Dolos has found.

directly files. It depends on dolos-core and re‐exports all its func‐
tionalities. As a result, dolos-lib serves as the primary library for
developers embedding similarity detection in their applications.

The main purpose of dolos-lib is ingesting source code files, run
the similarity detection pipeline on them, and then provide the results
as JavaScript objects. It does not provide functionality to present these
results (either as files, as a website, or printing to the console), as this
responsibility belongs to dolos-cli (section 5.4). dolos-lib itself
uses the Node.js runtime and its API to read from the filesystem and
run the Tree‐sitter parsers provided by dolos-parsers.

The dolos-lib library offers convenient access to the source code
plagiarism detection pipeline through a Dolos class. Power‐users and
developers wishing to embed the Dolos s̓ capabilities in their scripts
and software using the JavaScript API can do so by following the ex‐
ample shown in listing 5.5.

96

5.3. Software libraries

Ingesting datasets

The dolos-lib library supports a myriad of different formats in how
the collection of source code files can be stored and passed to Dolos
for analysis:

• A list of files

• A ZIP archive with a collection of files

• A single comma‐separated values (CSV)‐file named info.csv
with at least a column filename pointing to the location of the
files

• A ZIP archive including an info.csv file in addition to a collec‐
tion of source code files

The last two options that pass the info.csv file to Dolos, can option‐
ally provide extrametadata toDolos. WhenDolos detects thismetadata,
it will include this in the report to enhance the visualisations provided
by dolos-web (section 5.5). When analysing a ZIP file, Dolos will try
to use the unzip program present on the system and extract the ZIP
archive to a temporary directory to analyse the contents.

Automatic language detection

By looking at the extension of the files submitted for analysis, Dolos
is able to detect the programming language automatically. It checks
whether the most frequent file extension belongs to a programming
language for which it has a parser in dolos-parsers. Dolos ignores
files that do not have an extension that matches this programming
language, and shows a warning indicating that not all files have an
extension matching the programming language.

This is a small but convenient quality‐of‐life feature that allows Dolos
to be executed without any extra user input except for a collection of
files. In addition, this also allows Dolos to have a convenient developer
interface for working around parsers that have a slightly different
structure. Some Tree‐sitter repositories provide multiple parsers (e.g.
tree-sitter-typescript provides a parser for typescript and
tsx). Having a Language class that knows the correct parser is an
ergonomic abstraction that helps developers to find the correct parser.
It is still possible to override this behaviour andmanually specifywhich
programming language is used in the source code submissions.

97

Chapter 5. Implementation

Tokenisers

Dolos can support multiple kinds of tokenisers that transform a string
of source code into tokens. The most common tokeniser is the Code-
Tokenizer which creates a tree-sitter parser to parse the source
code. The Tokenizer abstract class allows for other kinds of token‐
izers.

The CharTokenizer is a tokeniser that will make a separate token
out of each character in a file. Using this tokeniser, the source code
similarity detection pipeline essentially searches for exact matches
between the submissions. When submitting files with the extensions
txt (plain text) or md (markdown), Dolos will use this tokeniser by
default. One could say that Dolos is able to perform textual plagiarism
detection using this tokeniser; however, there are other tools that are
far more effective for that purpose.

There has been a draft of a tokeniser for computational notebooks
(e.g. Jupyter Notebook13). These interactive notebooks are stored as
JSON‐files with an array of cells which can be either text or code. We
developed a prototype that would extract the text and code and run
a CharTokenizer and CodeTokenizer on the corresponding parts,
but we discontinued this prototype. As an alternative, it is possible to
extract code and text using the nbconvert14 utility.

5.4. Command-line interface

The CLI dolos-cli was the first user‐facing module that was created
for Dolos. It exposes the similarity detection functionalities provided
by dolos-lib. Dolos can display results from the analysis pipeline
in the terminal, export these to CSV‐files, or launch a dashboard to
inspect the results in the browser (using dolos-web).

The CLI provides two commands: dolos run executes the similar‐
ity detection pipeline and output the results, dolos serve displays
the results of a previous analysis again. These commands accept
command‐line options configuring the similarity detection pipeline
parameters and output options. Chapter A describes the exact com‐
mands and options supported by dolos-cli.

13jupyter.org
14nbconvert.readthedocs.io

98

https://jupyter.org
https://nbconvert.readthedocs.io

5.4. Command‐line interface

5.4.1. CSV-format

The dolos-climodule defines the format of the analysis result files
written to the filesystem. The format currently consists of four CSV‐
files:

metadata.csv The smallest file that contains general information
about the analysis: the pipeline parameters used to perform the
analysis, warnings (if any), programming language, creation date,
and a report title.

files.csv Contains a list of all submitted files used in the analysis
with their name, contents, the parsed tokens, and a mapping
between each token and its corresponding location in the file.

pairs.csv For each pair of files, it contains the calculated metrics,
among them: similarity, longest overlap, and total overlap.

kgrams.csv The (shared) fingerprints occurring in at least two source
code files, listing all files that share this fingerprint.

This output format has evolved slightly over time to minimise the
report file size. Early versions of Dolos would store the k‐grams (fin‐
gerprints) in a separate directory with a single file for each k‐gram.
However, there can easily be thousands of k‐grams shared between a
collection of submissions. With each of these files taking up at least
4096‐bytes15, this would inflate the disk size used by a report signific‐
antly. Combining these files in a single CSV‐file significantly reduced
the required storage space.

5.4.2. Launching the Web UI

After the analysis has completed, the CLI is able to display the results
in an interactive dashboard (section 5.5). Since theWeb UI uses the
report CSV‐files, the CLI will first generate the report and write these
CSV‐files to the filesystem. Next, the CLI will start a simple web server
to host these CSV files and theWeb UI. If possible, the CLI will request
the operating system (OS) to open a new browser tab pointing to the
uniform resource locator (URL) where these files are hosted.

Theweb server used to rely on Express.js16 but was replaced by directly
launching an HTTP server using the Node.js http.Server API. To
fully replace the Express server, we added 63 extra lines of code, but

15The conventional fileystem block size onmost operating systems.
16expressjs.com

99

expressjs.com

Chapter 5. Implementation

this avoids installing 64 extra dependencies. This was one of the more
effective attempts reducing the number of dependencies in the Dolos
codebase to improve maintainability.

Users who want to inspect a report that was already generated, can use
the dolos serve subcommand that only launches the web server.

5.5. Web interface

We implemented the visualisations discussed in chapter 4 using the
JavaScript frameworks Vue 317, Vuetify 318, and D319. By combining
these three frameworks, we built a single‐page application (SPA) visu‐
alising a similarity analysis report generated by the source code sim‐
ilarity analysis pipeline. This section describes the rationale behind
choosing these frameworks and provides specific details about the
implementation of theWeb UI.

5.5.1. Vue philosophy

Vue, or Vue.js, is a JavaScript framework design for building user in‐
terfaces and SPAs. Vue positions itself as the progressive framework,
as it is designed to scale according to the application and supports
deployment across web browsers, desktop applications, mobile ap‐
plications and other platforms. First released in 2014, it has gained
significant popularity due to its simplicity, flexibility, and incremental
adoptability.

Vue adheres to a clear philosophy that results in maintainable ap‐
plications for building user interfaces. Vue follows the model‐view‐
viewmodel (MVVM) design pattern which differs from the model‐view‐
controller (MVC) design pattern. In the MVC design pattern, user in‐
teractions are applied to the controller, which manipulates the model
and, in turn, influences the view. In the MVVM design pattern, the
viewmodel acts like a data object, exposing the model data in a way that
allows the view to easily access and manipulate it.

To achieve this, Vue provides the following building blocks:

17v3.vuejs.org
18v3.vuetifyjs.com
19d3js.org

100

https://v3.vuejs.org
https://v3.vuetifyjs.com
https://d3js.org

5.5. Web interface

Components

Vue 3 encapsulates functionality in single‐file components (SFCs) that
extend the Hypertext Markup Language (HTML) elements. These SFCs
can be compared to classes from the Object‐Oriented programming
paradigm and are designed to be modular and reusable. Each SFC
consist of an HTML template with CSS styling, and JavaScript‐code that
provides the component s̓ functionality. Some components have input
data (called props, short for properties) determining how that compon‐
ent behaves. These props can serve as configuration options for that
component or as the viewmodel that this component should bind to.
Listing 5.6 shows an example of a single file component present in
Dolos.

These modular components facilitate their reuse across applications.
Consequently,Vue boasts a rich ecosystemof components and libraries
that address common challenges in web development. Dolos leverages
the Vuetify library of predefined UI components to ensure a consistent
user interface. Vuetify provides the building block components to
build interactive interfaces, such as buttons, cards, and layouts. The
visual design of these components adheres to the Material Design
specification20.

Reactivity

Vue offers primitives that support the reactive programming paradigm.
This paradigm enables programs to respond to changes in data or
events, propagating updates throughout the system as needed. De‐
velopers declare reactive values, also known as reactive state or observ‐
ables. When defining these reactive values, they can depend on other
reactive values. This dependency causes the dependent value to auto‐
matically subscribe to the original value, reacting to any changes. In‐
stead of explicitly specifying how data changes, developers define
how data flows through their system in a declarative manner. This
paradigm is well‐suited for applications that process events and real‐
time data, such as user interfaces. These reactive values often serve as
the viewmodel in the MVVM design pattern.

Stores

In small Vue applications, it is possible use only reactive component
props to propagate the model information throughout the applica‐

20m3.material.io

101

https://m3.material.io

Chapter 5. Implementation

tion. However, once the application and its global state become larger
and more complex, this approach becomes more challenging. Vue
addresses this by introducing the concept of stores through a neatly
integrated library Pinia21. A store acts as a pool of reactive global state,
accessible from anywhere in an application using the singleton design
pattern. Typically, the model from the MVVM pattern is present in or
accessed by the stores of a Vue application.

5.5.2. Report ingestion and initialisation

dolos-web visualises similarity detection reports generated by Do‐
los s̓ source code similarity detection pipeline. It ingests the report data
created by the CLI by reading CSV‐files as described in section 5.4.1.
When a user opens the Web UI, Vue will show a loading animation
and begins the initialisation of the central API store (api.store.ts).
During this phase, the API store initialises the metadata store, the file
store, the k‐gram store, and pairs store. Each of these stores fetches
their corresponding CSV‐file and parses it using the Papaparse22 library.
Once the report data is loaded in the store, it calculates the similarity
threshold using the algorithm described in section 4.3.2. After com‐
pletion, the loading animation is replaced by the proper UI displaying
the report results, starting with the overview page (section 4.3).

5.5.3. D3 Visualisations

The DolosWeb UI offers insight in the source code similarity report by
presenting clear visualisations. We constructed these visualisations
using the D323 JavaScript visualisation library (Bostock et al. 2011). D3
is a low‐level toolbox that provides the building blocks for creating
interactive data‐driven visualisations.

The visualisations that use D3 include:

• The Similarity Histogram (section 4.3.1)

• The Plagiarism Graph (section 4.4)

• The Cluster Timeline (section 4.5.1)

• The Cluster Heatmap (section 4.5.1)

21pinia.vuejs.org
22papaparse.com
23d3js.org

102

https://pinia.vuejs.org
https://papaparse.com
https://d3js.org

5.5. Web interface

1 <script lang="ts" setup>
2 import { storeToRefs } from "pinia";
3 import { useApiStore } from "@/api/stores";
4

5 interface Props { compact?: boolean; }
6

7 const props = withDefaults(defineProps<Props>(), {});
8 const { cutoff, cutoffDefault } = storeToRefs(useApiStore());
9

10 const resetCutoff = (): void => {
11 cutoff.value = cutoffDefault.value;
12 };
13 </script>
14

15 <template>
16 <div class="similarity-setting">
17 <label v-if="!compact" class="text-medium-emphasis">
18 Threshold ≥ {{ (cutoff * 100).toFixed(0) }}%
19 </label>
20 <div class="similarity-setting-actions">
21
22 {{ (cutoff * 100).toFixed(0) }}%
23
24 <v-slider v-model.number="cutoff" min="0.25" max="1" />
25 <v-btn icon="mdi-restore" @click="resetCutoff" />
26 </div>
27 </div>
28 </template>
29

30 <style scoped>
31 .similarity-setting label {
32 font-size: 0.9rem;
33 font-weight: normal;
34 }
35

36 .similarity-setting-actions {
37 display: flex;
38 justify-content: space-between;
39 align-items: center;
40 }
41 </style>

Listing 5.6. The Vue 3 component SimilaritySettings.vue from the
dolos-web package, demonstrating how Vue 3 works. This component
provides a single slider to adjust the similarity cutoff value globally used
throughout the application. Since the cuttoff value is part of the global state,
it is saved in a store. This store provides the reactive value cutoff. When
this cutoff in the store changes, the reactiveness will automatically re‐
render the slider and the similarity percentage shown. Updates in the other
direction are also possible: if the user changes the slider value, this change
will propagate to the store and update all other components using this value.
By using the v-slider component provided by theVuetify libary, this com‐
ponent will have a style consistent with the rest of the application, coherent
with the Material Design specification.

103

Chapter 5. Implementation

Except for the plagiarism graph, these visualisations use D3 to render
an interactive Scalable Vector Graphics (SVG) image. The plagiarism
graph uses the HTML Canvas API to render the force‐directed graph
efficiently, because of the sheer amount of nodes and edges that need
to be rendered.

Plagiarism graph

The plagiarism graph, with its design detailed in section 4.4, is themost
complex visualisation in Dolos and has undergone several rewrites
and optimisations to maintain performance and manageability. Initial
implementations of the plagiarism graph used D3 s̓ SVG API, resulting
in an SVG element for each node and connecting edge. As the threshold
decreases, the number of edges increases, leading to a slow and unre‐
sponsive page as the browser s̓ HTML parser and renderer struggle to
handle the sheer number of elements updating every frame.

To address this performance issue, we refactored the plagiarism graph
implementation to leverage the HTML Canvas API. This API allows
direct drawing of basic shapes on a fixed‐size canvas, bypassing the
HTML parsing process and significantly improving performance. The
result is a much snappier plagiarism graph capable of rendering large
numbers of nodes and edges efficiently.

For the π‐ramidal constants dataset as mandatory exercise24, the previ‐
ous implementation would freeze the page for 3 seconds with a sim‐
ilarity threshold of 50% (1 398 edges) and for 55 seconds with a 25%
threshold (13 528 edges). When this page loaded, the plagiarism graph
was unusably unresponsive. The current implementation using the
canvas API remains responsive even at a 25% similarity threshold. Even
when loading the Pluto killer dataset, which comprises 1162 nodes and
674 541 edges, the plagiarism graph does not freeze before rendering
the graph with a 25% similarity threshold. However, the page does
begin to struggle as evidenced by a noticeable drop in frame rate.

The current implementation also enhances codequality. Previously the
plagiarism graph implementation was concentrated in a single class of
570 lines of code. The refactored version features a clearer structure
and is more aligned with Vue s̓ philosophy. The source file serves use-
D3ForceGraph.ts as the entry point for creating the force‐directed
graph simulation. This source file exports the useD3ForceGraph
composable function, which encapsulates clearly defined stateful logic
for rendering the plagiarism graph. Instead of directly accepting a

24dolos.ugent.be/demo/pyramidal‐constants/exercise/

104

https://dolos.ugent.be/demo/pyramidal-constants/exercise/

5.5. Web interface

reactive list of nodes and edges, it offers functions to ergonomically
accept or update them. This composable delegates most functionality
to four dedicated source files:

• data.ts: Stores the nodes (submissions), edges (pairs) and
groups (clusters).

• interaction.ts: Handles user interactions, such as showing
tooltips, selecting, and draging nodes and clusters.

• simulation.ts: Calculates newnode positions according to in‐
teracting forces, and recalculates the convex hull around clusters.

• rendering.ts: Draws the nodes, edges and groups on the
HTML canvas.

The result is a modular, maintainable and efficient plagiarism graph
component, which stands as one the most intuitive visualisations in
Dolos.

5.5.4. The Monaco editor

The comparison page (section 4.6) relies on the Monaco editor25 to
render a pair of source code files. This editor was initially developed
for the highly popular IDEVSCode26. TheMonaco editor is feature‐rich
and provides extensive customisation options.

The comparison page has two modes, indicated by the top left tabs:
matches and diff. The diff tab (shown in figure 5.2b) uses Monacos̓
built‐in diffing engine to highlight the differences between two files.
The Dolos Web UI automatically selects this tab when the similarity
exceeds 80%.

The matches tab (shown in figure 5.2a) highlights similar code frag‐
ments discovered by the pipeline. Storing all matching information in
the CSV‐files would use a lot of disk space, so Dolos instead calculates
these fragments lazily. When Dolos requires the matching fragments
of a pair, it runs the source code similarity detection algorithm again
using the dolos-core library. All information to re‐calculate this
data is present in the CSV‐files. Once we have constructed the small
fingerprint index for these two files, we apply the method described
in section 3.3.3 to compute the matching code fragments.

25microsoft.github.io/monaco‐editor
26code.visualstudio.com

105

https://microsoft.github.io/monaco-editor
https://code.visualstudio.com

Chapter 5. Implementation

(a) Pairwise matches

(b) Pairwise diff

Figure 5.2. Two pairwise editor modes

This process is quite fast, as it must analyse only two already token‐
ised submissions. However, we cannot run this on the main thread
in the browser, as it would noticeably freeze the web page. We use a
web worker to perform this computation asynchronously in the back‐
ground, and briefly display a loading animation.

Using the locations of these fragments, we use Monacos̓ decorations
API to highlight the areas present in a fragment. When selecting a
highlighted area in the editor, we give the corresponding decorations a
different to indicate these matching fragments in both submissions.

5.5.5. Server mode

The dolos-web package, by default, compiles in normal mode. In this
configuration, DolosWeb UI visualises a single report, expecting its
associated data files to be situated in a predetermined location. This

106

5.6. API server

mode is intended for use in conjunction with the CLI, facilitating a
seamless interaction between the two components.

Since introducing theweb server (section 5.6), we incorporated a dedic‐
ated server mode into the dolos-web package. This mode modifies UI
to communicate with the dolos-api API server and introduces cap‐
abilities to upload, manage, and share reports. The build tool, Vite27,
determines the current mode by detecting the presence of environ‐
ment variable VITE_MODE=server. When in server mode, Vite uses
the VITE_API_URL variable to locate the Dolos API server.

Combining the components for creating a new analysis and inspecting
the analysis report, results in a seamless interface between these two
aspects. This design enables reusing components from the normal
mode and allows users to transition effortlessly between reports.

Server mode introduces a new upload page (illustrated in figure 5.3),
enabling users to submit new datasets for analysis. This page features
an upload form where users can submit a ZIP archive containing the
submissions they wish to analyse. The Dolos Web UI keeps track of
previously analysed reports and displays a list from which users can
view, share, or delete these reports.

We opted not to implement user management and authentication to
Dolos, as this would introduce unnecessary complexity not necessarily
for our use case. Instead, upon creating a new report, the Dolos API
generates a URLwith a secret identifier that grants access to that report.
The DolosWeb UI stores this unique URL in the browser s̓ LocalStorage
and ensures this URL remains hidden from the web page s̓ address bar.
The UI facilitates sharing a report via this secret URL, and visiting a
shared report adds it to the list of known reports.

5.6. API server

The Dolos API server provides access to Dolos s̓ similarity detection
pipeline through a JSON API. This API integrates with the DolosWeb
UI, built in server mode (section 5.5.5), to form the Dolos web server.

We have simplified the installation process for Dolos CLI to minimise
potential obstacles. Nevertheless, this task can still be challenging for
instructors, especially those less adept with technology. The Dolos
Web server addresses this issue by enabling instructors to perform
source code similarity detection within their browsers.

27vitejs.dev

Even those adept
with technology
struggle with
installing
software from
time to time.

107

https://vitejs.dev

Chapter 5. Implementation

Figure 5.3. Upload page shown when the DolosWeb UI is built in server mode,
acting as the lauchpad of the Dolos web application. The left card shows the
upload form where users can submit a new collection of source code files
to analyse. The right card shows a searchable table for accessing, deleting
and sharing previously submitted reports.

Currently, the API is freely accessible without authentication and no
rate‐limiting, allowing developers to integrate Dolos as a microservice
within other web applications. Notable examples of such external
integrations are presented in section 5.6.2.

The Dolos API server is the sole component within the Dolos ecosystem
implemented using an alternative programming language. It is driven
by Ruby on Rails28 (short: Rails), a full‐stack and full‐featured frame‐
work for the Ruby programming language. The API server harnesses
Docker to execute analysis tasks and uses the MariaDB relational data‐
base server to persist report data.

5.6.1. API submission flow

Using the Dolos API server is quite straightforward. Creating a new
source code similarity analysis goes through a few steps, visualised in
figure 5.4.

First, the API consumer (for example, the DolosWeb UI in server mode)
submits a new dataset (a ZIP archive with source code files) using a
HTTP POST request. The API server stores this dataset and links a new
Report record to it in the database with a unique, secret identifier.
The server enqueues a new analysis in the job queue for this report
and sets the report status to queued. The API responds with a JSON
object including the Report secret URL.

28rubyonrails.org

108

https://rubyonrails.org

5.6. API server

In the background, worker processes process the job queue using the
delayed_job29 asynchronous queue system. Once a worker picks up
a pending report from the job queue, it updates its status to running.
The background worker uses the same system used by Dodona to run
the analysis jobs in an isolated, sandboxed environment: a job will run
the Dolos CLI using the dolos-cli Docker container (section 5.7.3).
Once the analysis is complete, the worker collects the resulting CSV‐
files and stores them with the Report record. Finally, the worker
updates the report status to finished. If the analysis failed or an
error occurred when trying to run the analysis, the report status will
be updated to failed or error.

Meanwhile, the API consumer can fetch the report status by perform‐
ing a HTTP GET request on the secret report URL to look up its status.
Once the status of the report is finished, the CSV‐files are available
for download. The consumer can fetch each CSV‐file using this secret
report URL and the file name.

Optionally, the API consumer can send a HTTP DELETE request to
the report URL to remove the report. This will remove the stored
dataset with the source code files, and the resulting CSV‐files. The API
will update the report status to deleted to indicate this change. The
web server can also periodically remove reports in the same manner
according to its data retention policy.

5.6.2. External integrations

The Dolos API facilitates the integration of Dolos as a microservice
within other platforms. To integrate Dolos with an application, the
following two steps are needed:

• Initiate a new analysis by submitting a ZIP archive containing
the desired source code files to Dolos.

• Direct the user to the Dolos report URL received in response.

The HTTP POST request, as detailed section 5.6.1, contains all neces‐
sary information for Dolos to generate the similarity report. Naturally,
users must specify which submissions they wish to analyse. The ap‐
plication then compiles these submissions into a ZIP archive before
dispatching them to Dolos. Gathering the source code of the sub‐
missions and creating the ZIP archive can be resource‐intensive and

29github.com/collectiveidea/delayed_job

The code running
analysis jobs is in
fact a copy‐paste
of the Dodona
code.

Amicroservice is
an independent
and specialised
service
communicating
through a
lightweight
protocol.

109

https://github.com/collectiveidea/delayed_job

Chapter 5. Implementation

DolosWeb UI Dolos API Job queue Background worker

POST /reports/

New job

Report URL

Process job

dolos-cli

GET /reports/:id

running

Poll reportPoll report Wait for the report status to be finished

Job completed

GET /reports/:id

finished

GET /reports/:id/data/:file

CSV‐file

Fetch filesFetch files Download each CSV‐file created by dolos-cli

Figure 5.4. Sequence diagramof the analysis flow through the Dolos API server.

110

5.6. API server

time‐consuming task, particularly when numerous submissions are
involved.

Upon submitting the analysis and redirecting the user to the report
URL, the report may not be immediately available. To avoid the ex‐
ternal application repeatedly polling the report until the analysis is
completed, we enable applications to promptly redirect users to Dolos.
The DolosWeb UI, operating in server mode, will initially request the
report status. If the Dolos API server is still processing the report, a
loading page will display until the analysis concludes.

Dodona

Dolos originated and evolved within the team responsible for building
Dodona, the programming exercise platform at Ghent University. In‐
tegration has always been a key objective for Dolos since its inception,
and this integration has progressively advanced during its develop‐
ment. Initially, Dolos could interpret the info.csv‐file included in
Dodonas̓ submission exports. Subsequently, Dolos CLI gained the
capability to directly utilise the ZIP archive as input, eliminating the
need for users to extract its contents manually. The Dolos web server
further streamlined this process by enabling users to upload the ZIP
archive immediately after downloading it from Dodona. These efforts
culminated with the merging of a pull request on 13 May 2024, which
achieved the direct integration of Dolos within Dodona.

This integration introduces a Detect plagiarism button on the Dodona
pages that list all submissions for an exercise. Activating this button
initiates the similarity detection process, as illustrated in figure 5.5,
ultimately directing the user to the Dolos similarity report. Following
the initial integration, instructors can also also trigger the similarity
detection process from within the evaluations page, nudging them to
perform a quick plagiarism check before commencing the grading
process.

A+ and Radar

A+ is a learning management system (LMS) initially launched by the
Learning+Technology research group at Aalto University in Helsinki,
Finland (Karavirta et al. 2013). CS-IT, the IT team at the Department
of Computer Science at Aalto University, is currently leading this pro‐
ject. A+ LMS focuses on integrating multiple online learning services
by leveraging protocols that dictate how these services should work
together.

111

Chapter 5. Implementation

Dodona frontend Dodona backend Dolos API DolosWeb UI

POST create export

Export status URL

GET export status

Status

Poll exportPoll export

POST create report

POST create report

Report URL

Report URL

Redirect user to report

GET report status

Status

Poll reportPoll report

Figure 5.5. Sequence diagram of the flow of running a similarity detection
from within the Dodona platform. The user initialises the flow by clicking
a Detect plagiarism button on a submissions page in Dodona. The Dodona
frontend (JavaScript) creates an ZIP archive export including the desired
submissions and polls the status of this export. Once the export is ready,
the frontend confirms the report creation, after which the Dodona backend
will upload the report to the Dolos API, queueing a new report. The Dodona
frontendwill then redirect the user to the Dolos report URL, where the Dolos
Web UI will show a loading screen until the report is ready.

112

5.7. Additional components

One of these services is Radar30, a web service for analysing source
code similarity created in 2015. Radar implements the Running Karp‐
Rabin Greedy‐String Tiling (RKR-GST) matching algorithm to search
for similarities between submission source code. Using the Learning
Tools Interoperability (LTI) protocol, Radar fetches course, exercise,
and submission information to perform its analysis.

The CS-IT team at Aalto University contacted us in April 2024 mention‐
ing they wished to update Radar, a tool they have been using since
2015, with something newer. Dolos fit their purpose, and during a close
collaboration in September 2024, the CS-IT team integrated Radar and
Dolos in a single service.

An important part of the original Radar service was managing the
similarity detection results within the courses and exercises, while
also ensuring only authorised users can see the results. Dolos does not
implement course management, nor does it implement user authen‐
tication or authorisation. The CS-IT team then integrated Dolos within
Radar, similar to the approach of Dodona (section 5.6.2): Radar is re‐
sponsible for collecting the submission source code files, preparing a
ZIP archive, and then sending the archive to the Dolos API.

TheRadar integration does not use the publicly availableDolos API.The
CS-IT teamhost their own instance of the API using theDocker compose
configuration provided by Dolos (section 5.7.3). This ensures that
student submissions never leave their university s̓ servers to perform
the similarity detection.

5.7. Additional components

Some components in the Dolos repository are not directly part of the
Dolos source code similarity detection pipeline. However, these com‐
ponents are essential for the development and adoption of Dolos.

5.7.1. Documentation

Documenting software is a crucial practice in software development.
Writing good software is of little value if knowledge about its inner
workings is not preserved. Dolos provides two types of documentation:
internal documentation, which describes theworkings of eachmodule,
and external documentation, which explains how to use Dolos.

30github.com/apluslms/radar

This combined
service was
colloquially
dubbed Rhodos.

113

https://github.com/apluslms/radar

Chapter 5. Implementation

Internal documentation

The internal documentation outlines the current state of the code and
architecture underpinning Dolos. Each primary module includes a
README.md file that provides a high‐level overview. This document
serves as a starting point to developers interested in contributing to
that module. GitHub and NPM prominently display the contents of
this README file on the main repository or package page, helping
external developers understand the module s̓ main role and determ‐
ine whether Dolos meets their needs. Additionally, comments inter‐
spersed throughout the code offer more detailed insight into the code‐
base s̓ inner workings.

The Git history, GitHub pull requests, and issues provide a record of
all major changes and fixes applied throughout the development of
Dolos. When investigating or remediating a bug or lacking feature, it
is very helpful to re‐read the initial reasoning that went behind the
original code. The release notes published with each new release of
Dolos contain a short summary about these changes in each release.

External documentation

Themodule dolos-docs contains the external documentation aimed
towards users and developers. Presented in the form of a public‐facing
website hosted at dolos.ugent.be, this documentation aims to explain
how to use Dolos in its various facets: the software libraries, the CLI,
the web server, the API, … Because this website is often the first point
of contact with users searching for similarity detection tools that fit
their purpose, the website highlights the features and functionality of
Dolos.

The documentation website is a static website using the Vitepress31
static site generator. Vitepress transforms pages from the Markdown
format to HTML. This allows developers to focus on writing the plain
text documentation, while Vitepress takes care of properly rendering
it in a modern website interface. Vitepress uses Vue components and
allows extending the documentation with custom components. We
leverage this functionality on the page with the API documentation32
to allow visitors to modify the URL of the Dolos API endpoint shown
on that page.

The documentation website currently provides the following pages:

31vitepress.dev
32dolos.ugent.be/docs/api.html

114

https://dolos.ugent.be
https://vitepress.dev
https://dolos.ugent.be/docs/api.html

5.7. Additional components

• Introduction: What is Dolos? Who made it?

• Use Dolos: Explaining how to use the Dolos web server.

• Use case: Dodona: Showing instructors how to use Dolos to
analyse Dodona submissions.

• Self‐host Dolos: Instructing developers how to set up their own
Dolos web server

• Dolos API: Listing the API endpoints and demonstrating it with
examples.

• Install Dolos CLI: Instructing how to install the Dolos CLI.

• Use Dolos CLI: Demonstrating how to use the Dolos CLI.

• Run Dolos CLI using Docker: Explaining how to run Dolos CLI
using the dolos-cli Docker container (section 5.7.3)

• Add metadata: Describing the info.csv format to enhance a
dataset with submission metadata.

• Add new languages: Listing methods to add support for new
programming languages.

• Use the Dolos library: Providing an example on how to use the
dolos-lib software library.

• How Dolos works: Describing the Dolos sourcecode similarity
detection pipeline algorithms.

• Supported programming languages: Explaining how Dolos sup‐
ports programming languages.

• Researchpublications: ListingpublicationsmadebyTeamDodona.

• Contact us: Providing our contact details.

5.7.2. Samples

The samples folder in the root of the Dolos repository contains small
source code snippets for programming languages supported by Dolos.
These samples are used in tests to validate whether the tokenisers
function as expected and produce stable results. We sourced these
samples from the Caesar cipher page on the Rosetta Code website33.
Rosetta Code is a wiki that provides code snippets implementing al‐
gorithms in as many programming languages as possible. The wiki

33rosettacode.org/wiki/Caesar_cipher

115

https://rosettacode.org/wiki/Caesar_cipher

Chapter 5. Implementation

docker run --init --network host -v "$PWD:/dolos"
ghcr.io/dodona-edu/dolos-cli -f web *.js↪→

Listing 5.7. Shell command to run the Dolos CLI using its Docker image. A
user running this command only needs to have Docker installed for Dolos
to work. The --network host option is needed for the host system to
access the DolosWeb UI in the container. The -v optionmounts the current
directory as theworking directory for the Dolos CLI present in the container.

offers implementations in over 150 different programming languages.
Most implementations are concise but demonstrate common language
features.

5.7.3. Containers

Managing program dependencies can be quite challenging, especially
when these components use different programming languages and
requires specific versions of a software development kit (SDK). Docker
is a system to bundle programs and their dependencies in containers.
These containers run using lightweight OS‐level virtualisation, sharing
the host systems̓ kernel. Except for predefined channels like network
and file system access, the virtualised containers operate in isolation
from each other and the host system. This makes Docker a secure and
reliable solution to distribute packages.

dolos-cli

The dolos-cli Docker image, hosted on the full URL ghcr.io/dodona‐
edu/dolos‐cli, packages the CLI. Listing 5.7 shows the simple oneliner
that runs the CLI using this image. This image builds further on the
node:alpine image: a container image packaging the lightweight
Alpine Linux distribution34.

Dolos Docker Compose

Docker Compose is a configuration format and tool to combine mul‐
tiple containers together in one system. By clearly defining how each
container should connect to the network and file storage, it can be used
to create complex services. Dolos provides a compose configuration

34alpinelinux.org

116

https://ghcr.io/dodona-edu/dolos-cli
https://ghcr.io/dodona-edu/dolos-cli
https://alpinelinux.org

5.7. Additional components

to host the Dolos web server, combining the API andWeb UI, on your
own system.

The Docker Compose configuration for the DolosWeb server publishes
two extra container images on GHCR: dolos-api bundling the API
server, and dolos-web bundling theWeb UI. The Dolos API image is
used in two container services: once as the API server itself and once
as a worker processing the analysis jobs. Changing the environment
variables in the docker-compose.yml file in the repository config‐
ures the services in the containers. Because the containers combine
to form the Dolos web server, they are not able to run standalone.

Currently, we recommend using our Docker Compose configuration
for self‐hosting the Dolos web server. This is the most straightforward
approach to achieve a secure and working setup. However, it is also
possible to run these services outside of Docker directly on the host
system. The public Dolos web server uses the latter approach.

5.7.4. Nix flake

Similar to Docker, Nix is a build tool and package management system
to reliably run software across diverse systems. Nix, often used within
NixOS35, uses declarative configuration files written in the Nix pro‐
gramming language. Unlike Docker, Nix enforces stricter reproducibil‐
ity by precisely specifying external sources. A Dockerfile, defining the
build steps of containers, allows interactions with non‐deterministic
sources, such as the internet. This can lead toDocker containers produ‐
cing different results when built at different times, potentially causing
unexpected consequences.

In contrast, Nix packages, often referred to as derivations, require their
inputs to be deterministic. For packages that need internet access
(e.g. to download a tarballwith source code), the accessed URL is stored
along with the cryptographic hash of the expected result. When the
package is downloaded again, Nix verifies that the hash matches to
ensure the inputs are consistent before continuing the build.

We provide aNix flake providing the following derivations that can help
when developing or using Dolos:

• A devshell, a shell environment with all required SDKs set‐up.

• The dolos-cli package, providing the Dolos CLI currently
present in the repository.

35nixos.org

117

https://nixos.org

Chapter 5. Implementation

nix run
'git+https://github.com/dodona-edu/dolos.git?submodules=1'
-- run -f web *.js

↪→

↪→

Listing 5.8. Shell command to run the Dolos CLI using the Nix flake. A user run‐
ning this command only needs to have Nix installed for the above command
to work. This command will download the latest version of Dolos and build
it locally, so the first execution can take a while. Subsequent executions
will use the cached derivation. Compared to the docker command, Dolos
executes on the host system and the usersʼ browser can directly access the
spawned web server with the UI.

• A check to validate whether this dolos-cli package can run
successfully.

Similar to Docker, this configuration provides a low‐dependency ap‐
proach to running Dolos, illustrated by listing 5.8. Instead of down‐
loading a sizeable Docker container image, Nix fetches the repository
source code and builds the package locally.

Especially the devshell configurations canhelp to provide a known‐good
development environment. The main reason to make these configura‐
tions, was for our personal development environments. Since these
configuration can be a useful alternative to Docker, we added them to
the repository.

118

Chapter 6.

Evaluation

To evaluate whether we succeeded in our goal of creating a user‐
friendly qualitative tool for source code similarity detection, we have
assessed Dolos through four methods:

• Usage metrics: We examine the adoption of Dolos by analysing
usage metrics (section 6.1).

• Quality benchmarks: We assess the quality of the similarity de‐
tection results by performing benchmarks (section 6.2).

• User Experience Survey: We evaluate the user‐friendliness of Do‐
los using a user experience questionnaire (UEQ) (section 6.3.1).

• Case study: We discuss how Dolos is utilised in practice to pre‐
vent and detect plagiarism (section 6.4).

6.1. Usagemetrics

An initial indicator of Dolos s̓ effectiveness, is its frequency of use.
Since its first deployment in december 2022, the public instance of
Dolos1 has processed 22 516 reports. The number of submitted ana‐
lyses has been steadily increasing since this public release, as shown
in figure 6.1. To preserve the privacy of its users, Dolos does not track
user information. However, analysing the web server logs of 10 days
between April 18–28 2025 reveals Internet Protocol (IP) addresses asso‐
ciated with 66 different countries, indicating that Dolos enjoys global
adoption. Figure 6.2 illustrates the number of submitted analyses,
grouped by country, including requests to the Dolos Application Pro‐
gramming Interface (API).

1dolos.ugent.be/server

119

https://dolos.ugent.be/server

Chapter 6. Evaluation

0

500

1,000

1,500

2,000

↑ Submitted analyses

2023 2024 2025
Month submitted →

Figure 6.1. Bar chart illustrating the evolution of number of submitted ana‐
lyses per month for the public instance of the Dolos web server. Since the
public release at the end of 2022, this number has been steadily increasing,
indicating that more and more teachers are adopting Dolos.

0

50

100

150

200

250

300

↑ Sumbitted analyses

India
United States

Vietnam

Slovakia

Belgium

United Kingdom

Canada

Indonesia

Australia

South Africa

Russian Federation

Taiwan

France

Hungary

Netherlands

Country

2021 2122 22263235 35

76
111

129143

250

331

Figure 6.2. Bar chart indicating top 15 countries from which analyses were
submtitted to the Dolos web server in the in 10 days between April 18–28
2025. Belgium, the country where Dolos is developed, is highighted in
black. Note that these numbers might be skewed by temporary fluctuations
because of this small time window.

120

6.1. Usage metrics

0

50

100

150

200

250

300

↑ Stars

2020 2021 2022 2023 2024 2025

Date →

291

Figure 6.3. Evolution of the number of stars of the Dolos repository on GitHub
on May 15th 2025.

These figures apply only to our public instance, and do not account for
usage by institutions that have set up their own instance to complywith
privacy regulations. We are aware of at least two additional instances:
one in Finland and one in the Netherlands. Other institutions hosting
their own instance will mostly do so using our containerised images
(section 5.7.3), for which we find that the dolos-api container has
been downloaded a total of 634 times from GitHub Container Registry
(GHCR).

Anothermeasure ofDolos s̓ adoption is thenumber of times the command‐
line interface (CLI) has been downloaded. The NPM package contain‐
ing the Dolos CLI has been downloaded 11 655 times since its release
in 2020. The container including the Dolos CLI has been downloaded
a total of 7 150 times.

The GitHub repository hosting the Dolos s̓ source code boasts 291 stars,
a method for developers to express appreciation and stay updated with
new releases (figure 6.3). Our repository also has 42 forks, 11 of which
have at least one commit.

These numbers
are very likely
inflated by
automated
dowloads.

121

Chapter 6. Evaluation

6.2. Benchmarks

This section is based on the validation section of our journal article “Dolos:
Language‐agnostic plagiarism detection in source code” (Maertens, Van
Petegem, Strijbol, Baeyens, Jacobs et al. 2022). My contributions to this
section in the original article include designing the methodology, collecting
data, implementing te benchmark software, performing the benchmark,
visualising the results and writing the original draft. While the methodo‐
logical approach remains largely consistent, we have expanded the scope
by incorporating an additional tool (Compare50) and additional datasets
evaluating alternative facets of the benchmark. The original benchmark
was repeated with the most recent versions of the compared tools, replicating
the original results. I have adapted the original text to harmonise with the
style and structure of this dissertation.

We conducted a benchmark to assess Dolos s̓ performance relative
to similar tools. The benchmark quantitatively evaluates Dolos s̓ the
predictive power for plagiarism detection and compares it against
four state‐of‐the‐art tools: Moss, Sherlock Sydney, JPlag, Plaggie and
Compare50. For JPlag, we consider both their legacy version JPlag 2,
and their latest release JPlag 6.

All tools under investigation compute a similarity value for each pair of
source files, but use different similarity measures. Direct comparison
of similarity values is therefore not relevant. Instead, we evaluate how
well the similarity measure of a tool can separate plagiarised from
non‐plagiarised code using the optimal similarity threshold for that
tool, as a surrogate for its predictive power to detect plagiarism. We
consider similarity values above the threshold as positive predictions
for plagiarism, and similarity values below the threshold as negative
predictions. A ground truth, or an approximation using expert annota‐
tions, allow us to determine whether these predictions are true or false.
This allows us to determine the recall, precision, and F1‐measure in
order to evaluate each tool s̓ effectiveness.

6.2.1. Datasets

In the domain of educational source code similarity detection, most
tools are validated using either private datasets comprising real stu‐
dent submissions or generated datasets where an original program
undergoes a series of modifications to simulate plagiarism (Novak et al.
2019). These datasets are rarely released into the public domain due
to the personal information they contain, thereby complicating the

122

6.2. Benchmarks

replication and interpretation of results and hindering the evaluation
of different tools against one another.

SOCO benchmark

We used the publicly available SOCO benchmark dataset containing
79 C files and 259 Java files (Arwin and Tahaghoghi 2006; Flores et al.
2014). This benchmark dataset features expert annotations of file pairs
deemed to be instances of plagiarism. The annotations for the C corpus
identify 26 of the 3081 C file pairs (0.84%) as plagiarised, with 37 C files
(46.84%) occurring in at least one plagiarism pair. The Java corpus
labels 84 out of 33 411 Java file pairs (0.25%) as plagiarised, with 115
Java files (41.97%) involved in at least one plagiarism pair.

Private dataset

Wehave compiled a dataset containing eight confirmed cases of source
code plagiarism between 2020 and 2023, where plagiarism occurred
during summative assessments such as exams and evaluations. Each
case consists of a corpus of anonymised submissions in the Python
programming language and includes exactly one plagiarised pair of
submissions. The students involved in each pair confirmed their pla‐
giarism during internal hearings. This dataset serves the purpose of
assessing how each similarity detection tool performs on actual cases
of plagiarism, in contrast to a synthetic dataset.

Plutokiller

To measure resource usage and performance of each similarity detec‐
tion tool, we additionally ran our benchmarks on an internal dataset
derived from the Plutokiller2 exercise on Dodona. This dataset con‐
tains 1162 submissions, 80 lines of code on average, submitted to this
exercise in the Python programming language. While this dataset
likely contains a large amount of plagiarism, the absence of a ground
truth indicating which pairs are plagiarised precludes its use for de‐
termining predictive accuracy. However, the substantial number of
files and the resulting 674 541 pairs make it an excellent stress test
for measuring the run time and memory usage of a similarity detec‐
tion analysis. Using an automatically selected similarity threshold of
86%, Dolos identifies 88 clusters with the largest cluster containing 42
submissions. The resulting plagiarism graph is shown in figure 6.4.

2dodona.be/en/activities/82601015/

123

https://dodona.be/en/activities/82601015/

Chapter 6. Evaluation

Figure 6.4. Plagiarism graph of the Plutokiller dataset showing all clustered
submissions using the automatically selected similarity threshold of 86%.
Submissions with all pairwise similarities below this threshold are not in‐
cluded in a cluster and threfore shown in this figure. This dataset includes
1 162 submissions, resulting in 674 541 pairs. Using the similarity threshold,
Dolos finds 88 clusters with the largest cluster containing 42 submissions.

124

6.2. Benchmarks

6.2.2. Method

We employ the F1‐score as a global measure of predictive accuracy for
similarity detection tools. The F1‐score is calculated as the harmonic
mean of precision and recall, using the formula F1 = 2 · precision·recall

precision+recall .
Since the F1‐score is dependent on a similarity threshold, we determ‐
ine the threshold that maximises the F1‐score, representing the op‐
timal prediction for a given similarity analysis. The threshold cor‐
responding to the maximum F1‐score concurrently minimises the
number of false positives and false negatives. This approach mirrors
how educators use plagiarism detection tools: they sort file pairs by
descending similarity and review pairs in that order until the sequence
of non‐plagiarised pairs is sufficiently long to anticipate no further
instances of plagiarism.

Each tool under investigation possesses parameters that influence its
computation of similarity values. Rather than merely calculating the
maximum F1‐score for a single configuration of parameter settings,
such as the default settings of a tool, we repeat this process across a
range of configurations. This parameter sweep provides additional
insights into the impact of parameter settings on prediction accuracy,
reveals differences between programming languages, and assesses the
suitability of default settings. It also prevents the inadvertent selection
of suboptimal configurations or the cherry‐picking of favorable results
for individual tools. The configurations evaluated for each tool are as
follows:

• Dolos: k‐gram lengths 10, 12, 15, 17, 20, 23 and 25 (option -k,
default: 23), and window sizes 10, 12, 15, 17, 20, 25, 30, 35 and 40
(option -w, default: 17); 63 configurations in total

• Moss: all integers in the range [1, 20] as the maximum number
of files in which a code fragment may appear before it is ignored
(option -m, default: 10); 20 configurations in total

• Sherlock Sydney: all integers in the range [1, 5] as the number of
zero bits (option -z, default: 3) and the chain length (option -n,
default: 4); 25 configurations in total

• JPlag 2 and JPlag 6: all integers in the range [5, 20] as the min‐
imum number of matching tokens (option -t, default: 9 for Java
and 12 for C); smaller values increase sensitivity; 16 configura‐
tions in total

125

Chapter 6. Evaluation

• Plaggie: all integers in the range [2, 22] as the minimum number
of matching tokens (option -m, default: 11); equivalent to the
option -t of JPlag; 21 configurations in total

• Compare50: as this tool does not provide algorithmic parameters,
only one configuration was included in the benchmark

Our benchmark code additionally measures the run time and memory
usage using the Unix getrusage(2)3 functionality. The benchmark
process spawns each tool as a child process and records the run time
as the sum of the user and system CPU time, while the memory usage
is recorded as the maximum resident set size. We executed these
benchmarks on a Unix system running NixOS with an 11th generation
Intel i7‐1165G7 CPU.

Due toMoss s̓ stringent limitations on the amount of submitted analysis
per day and the unchanged nature of its implementation, we opted
to reuse Moss s̓ benchmark results from our 2022 study (Maertens,
Van Petegem, Strijbol, Baeyens, Jacobs et al. 2022). Additionally, it is
not possible to measure the run time and memory usage of Moss, as it
is a web service.

6.2.3. Results

Upon plotting the benchmark results for the Java and C datasets, it
becomes evident that all tools demonstrate superior performance in
identifying plagiarism in Java compared to C (figure 6.5). Both the
default configuration (indicated by a vertical black line) and the best
configuration (represented by the rightmost circle) of each tool exhibit
significantly better predictive power on the Java dataset than on the C
dataset. A plausible explanation for this disparity lies in the variation
in inter‐annotator agreement. This metric, Cohen (1960, s̓) κ in this
case, measures the agreement between annotators, accounting for
the likelihood that they agree by chance. For the SOurce Code re‐use
(SOCO) datasets, this inter‐annotator agreement metric greatly differs
between the C (κ = 0.480, moderate agreement) and Java (κ = 0.668,
substantial agreement) files (Flores et al. 2014). Thus, the quality of
expert annotations appears to be a more critical factor than intrinsic
differences betweenprogramming languages for the SOCObenchmark.
In addition, the agreement scores themselves are not perfect, so the
ground truth used to compare similarity detection results with is likely
not completely correct.

3linux.die.net/man/2/getrusage

126

https://linux.die.net/man/2/getrusage

6.2. Benchmarks

SOCO Java

SOCO C

D
at
as
et

Dolos
JPlag 2
JPlag 6
Moss

Plaggie
Sherlock Sydney

Compare50

Dolos
JPlag 2
JPlag 6
Moss

Plaggie
Sherlock Sydney

Compare50
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F₁‐score →

Figure 6.5. Predictive accuracy of plagiarism detection tools on all Java (top)
and C (bottom) files in the SOCO benchmark. Circles indicate maximum F1‐
scores obtained with a particular configuration of a tool (parameter sweep).
Vertical black lines indicate maximum F1‐scores obtained with the default
configuration of a tool. Higher F1‐scores correspond to better predictive
accuracy.

Figure 6.6 visualises the similarity distribution of plagiarised pairs
within the C and Java datasets according to Dolos. With the C dataset
there is more overlap between plagiarised and non‐plagiarised pairs
than with the Java dataset. However, there are a few pairs in the Java
dataset classified as plagiarism with very low similarity values, indicat‐
ing that those will likely only contain small fragments of plagiarised
code.

SOCO Java

Examining the performance on the Java dataset, Dolos, Moss, Plaggie,
JPlag 2, and JPlag 6 all achieve maximum F1‐scores ranging between
0.8 and 0.9 for their default configurations. Compare50 scores just
below that with an F1‐score of 0.789. The default configuration of
Sherlock Sydney, which is also its optimal configuration for this corpus,
trails slightly with a maximum F1‐score of 0.764. Dolos attains the
highest‐scoring configuration (0.897) when using a k‐gram length of
25 and a window size w of 12, closely followed by JPlag 6 (0.876) when
using a minimum of 13 matching tokens, and JPlag 2 (0.871) when
using a minimum of 19 matching tokens. However, in terms of default
configurations, JPlag 6 outperforms Dolos with an F1‐score of 0.871

127

Chapter 6. Evaluation

C

Java

D
at
as
et0

10

20

30

40

50

0

10

20

30

40

50

↑ Number of pairs

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Similarity (binned) →

PlagiarisedNot plagiarised

Figure 6.6.Distribution of pairwise similarities computed with default settings
in Dolos for all C (top) and Java (bottom) files in the SOCO benchmark. True
cases of plagiarism according to the SOCOmetadata are shown in orange
and false cases in blue. Because of the combinatorial explosion of pairs, the
number of false cases with similarity values below 0.40 greatly exceeds the
maximum value shown on the graph.

128

6.2. Benchmarks

compared to Dolos s̓ 0.865. This marks a notable improvement from
JPlag 2 s̓F1‐score of 0.811 for its default configuration. Since JPlag 6 still
uses the same default configuration parameter for Java as JPlag 2, this
improvement is likely due to its new token normalisation feature.

Moss s̓ performance remains consistent across configurations, indic‐
ating lesser dependence on parameter settings. Conversely, Sherlock
Sydney exhibits a wide range of scores between 0.234 and 0.764. Des‐
pite JPlag and Plaggie utilising similar algorithms, there is a substantial
difference in the performance of their default and optimal configura‐
tions.

SOCO C

Analysing the C dataset reveals noticeably lower maximum F1‐scores.
Compare50 scores surprisingly good with its single configuration,
reaching an F1‐score of 0.647. The default configurations for Dolos
and Moss achieve similar scores, just under 0.6. The default config‐
urations for Sherlock Sydney, JPlag 2, and JPlag 6 score substantially
lower at 0.4 and 0.421, respectively. Once again, Mossʼ configurations
yield consistent results, while Sherlock Sydney s̓ scores vary widely.
Dolos achieves the highest F1‐score (0.667) using k‐grams of length 10
and a window w of length 25, followed by Sherlock Sydney (0.656), and
Compare50 (0.647).

JPlag 2 and 6 deliver identical results and perform poorly on this data‐
set, likely due to JPlag s̓ focus on the Java programming language. Plag‐
gie does not support the C programming language and thus has no
results for this dataset.

The substantial variation in maximum F1‐scores across tools, except
for Moss, underscores the importance of well‐chosen parameter set‐
tings for similarity analysis. In practical usage, validating optimal
parameter settings is challenging, and users are unlikely to exper‐
iment with various configurations. Therefore, it is crucial that the
default configuration consistently delivers robust results.

Moss s̓ consistent results likely stem from the nature of its configurable
parameter (option -m), which adjusts the maximum number of files
in which a code fragment may appear before being ignored. This
parameter significantly impacts similarity computations only when
many files are plagiarised from the same source, as is the case with
the Java dataset but not the C dataset (figure 6.7).

Moss and Dolos are the only tools that consistently yield good results
for both the Java and C datasets. Dolos demonstrates slightly superior

129

Chapter 6. Evaluation

Figure 6.7. Plagiarism graphs by Dolos for all Java (left) and C (right) files in
the SOCO benchmark, with similarity threshold 0.54 for Java and 0.58 for C.
Orange nodes are involved in at least one case of plagiarism according to
the metadata of the SOCO benchmark, whereas blue nodes are not involved
in any confirmed cases of plagiarism. Clusters of blue nodes indicate false
positives, whereby Dolos considers a pair to be plagiarism and the ground
truth does not. Single, unconnected orange nodes indicate false negatives
with Dolos missing a pair labeled as plagiarism in the annotations.

130

6.2. Benchmarks

Dolos
JPlag

Sherlock Sydney
Compare50

Case #1 Case #2 Case #3 Case #4 Case #5 Case #6 Case #7 Case #8
1 1 1 1 1 1 1 1
1 1 1 1 1 9 8 4
1 4 1 161 1 276 3 956 9
1 1 1 1 2 3 1 1

Figure 6.8. Similarity rank assigned by Dolos, JPlag (version 2 and 6), Sherlock
Sydney, and Compare50 to the plagiarised pair in each case of our private
dataset. JPlag 2 and 6 are combined into one, as they report identical results.
A higher rank indicates that that tool considers other pairs more similar
than the pair indicated with plagiarism, therefore instructors using that tool
are less likely to discover that case of plagiarism. These cases were initially
discovered using Dolos, so these results have an inherent bias towards this
tool.

overall predictive accuracy across the entire benchmark. Its optimal
configuration achieves the highest scores for both programming lan‐
guages, and its default configurations rank second for Java and third for
the C dataset. Thus, Dolos proves to be highly competitive with current
state‐of‐the‐art tools across multiple programming languages.

It is noteworthy that none of the tools achieved an F1‐score above
0.9 for the SOCO benchmark, indicating that each tool s̓ predictions
contain mismatches with expert annotations. This highlights the limit‐
ations of source code similarity detection tools and expert annotations,
emphasising that the ultimate decision to classify cases as plagiarism
should never be automated and requires human review (Weber‐Wulff
2019).

Private dataset

Figure 6.8 illustrates the ability of Dolos, JPlag, and Sherlock Sydney
to identify plagiarised pairs within our private dataset. JPlag reports
identical results for this dataset between versions 2 and 6, as this data‐
set uses the Python programming language. Both JPlag, Compare50,
and Dolos effectively detect high similarities for the plagiarised pairs.
While Dolos accurately reports all known plagiarised pairs as most
similar, Compare50 ranks six out of the eight cases first, and JPlag
identifies five out of eight cases as the most similar, but both tools
remain this pair within the top 10 most similar pairs.

Sherlock Sydney, on the other hand, identifies three out of eight cases
as most similar, and a fourth case within the top 10. These cases
are almost identical copies with minimal obfuscations. However, the
remaining four cases are obscured among other pairs due to the more

131

Chapter 6. Evaluation

extensive obfuscation techniques applied, such as variable renaming
and the addition of comments.

It would be erroneous to infer from these results that JPlag or Com‐
pare50 are less capable of detecting genuine instances of plagiarism.
The reported rank of the plagiarised pair is not necessarily a good cri‐
terion for the plagiarism detection capability of a similarity detection
tool. Additionally, the cases in our private dataset were initially dis‐
covered using Dolos, thereby introducing an inherent bias towards this
tool. It is likely that Dolos did not discover certain plagiarism cases that
would have been found by other similarity detection tools. Although
Dolos did not initially report all plagiarised pairs as the most similar
at the time of discovery, these cases were instrumental in refining our
similarity detection pipeline. One such enhancement is the integration
of a syntax tree preprocessing step, described in section 7.2.2.

From these observations, we can conclude that for our private data‐
set, any similarity detection tool leveraging the a parser or lexer for
similarity detection is a robust choice. Conversely, tools like Sherlock
Sydney, which do not utilise a parser, would have overlooked half of
the plagiarised cases.

Plutokiller

The primary objective of the Plutokiller dataset is to assess the resource
usage of each similarity detection tool. For this dataset, we executed
the benchmark three times and compared the average of run time
and memory usage for each tool. Figure 6.9 visualises the benchmark
results for this dataset. Moss is not included, because as a web service,
the run time heavily depends on server load and availability, and the
memory usage of the local submission script is negligible. Additionally,
Plaggie is excluded from this benchmark because it does not support
analysing Python files.

Sherlock Sydney demonstrates the lowest resource consumption, with
amean run timeof 0.144 seconds andamemoryusage of 148MB,which
is substantially lower than the other tools. However, Sherlock Sydney
also delivers the lowest quality results, both on the SOCO datasets and
our private dataset.

Compare50 has the slowest runtime of all similarity detection tools, re‐
quiring almost 6minutes to process this dataset. However, the runtime
of Compare50 is highly dependent on the desired number of reported
output pairs. Reducing this number will greatly improve Compare50 s̓
runtime, but can cause it to miss some plagiarised pairs. For this

132

6.2. Benchmarks

Dolos

JPlag 2

JPlag 6

Sherlock Sydney

Compare50

0 s 50 s 100 s 150 s 200 s 250 s 300 s 350 s

Run time →

30.2 s

52.5 s

219.8 s

0.1 s

350.9 s

(a) Total run time (in seconds) for each tool to analyse the Plutokiller dataset.
Sherlock Sydney is clearly the fastest, only requiring a fewmillisecons to
complete the analysis. Dolos completes the analysis in 30 seconds. JPlag
increased its run time over the years, going from 52 seconds with JPlag 2, to
219 seconds with JPlag 6, more than 4 times slower. Compare50 takes 350.9
seconds to process this dataset.

Dolos
JPlag 2
JPlag 6

Sherlock Sydney
Compare50

0 MB 500 MB 1000 MB 1500 MB 2000 MB 2500 MB

Memory usage →

1,131 MB
445 MB

2,860 MB
148 MB

400 MB

(b) Total memory usage in MegaBytes (MB) for each tool to process the Plu‐
tokiller dataset, measured using the maximum resident set size reported
on Unix. Sherlock Sydney requires the least amount of memory, followed
by Compare50, then JPlag 2, then Dolos, and then JPlag 6.

Figure 6.9. Run time and memory usage for each similarity detection tool,
averaged over three independent runs, using the Plutokiller dataset with
1 162 Python submissions.

133

Chapter 6. Evaluation

benchmark, the number of requested file pairs was set to the number
of total files included in the benchmark.

There is a notable increase in JPlag s̓ run time and memory usage
between versions 2 and 6. The run time increased more than fourfold,
from 52 seconds to 220 seconds. The memory usage surged from 445
MB to 2 860 MB. This substantial increase is likely attributable to the
additional features and functionality implemented within JPLag in
recent years.

Dolos ranks second in terms of run time (30 seconds), and fourth in
memory usage (1 131 MB). The total resource usage of all tools re‐
mains within reasonable limits. Even JPlag 6 s̓ run time of 220 seconds
translates to only 0.189 seconds per submission, and most modern
computers possess sufficient memory to handle an analysis of this
scale. However, as the number of submission pairs scales quadratic‐
ally with the number of submissions, JPlag 6 will exhaust available
memory before Dolos when dataset size increases.

6.3. Usability and User Experience

The benchmarks outlined in section 6.2 assess the predictive accuracy
and resource consumption of similarity detection tools. While these
metrics are crucial, they represent only one facet of a tool s̓ overall
utility. A primary objective of Dolos is to achieve excellence in user
experience (UX) and user interface (UI) design, aspects not captured
by the aforementioned benchmarks.

6.3.1. User Experience Questionnaire

To evaluate the usability of Dolos, we conducted a survey using the
User Experience Questionnaire (UEQ) (Laugwitz et al. 2008; Schrepp et
al. 2017). This questionnaire is designed to be a concise instrument for
measuring the user experience of interactive products. It comprises
26 items organised into 6 categories or scales:

• Attractiveness: overall impression — do users find the tool ap‐
pealing?

• Perspicuity: Is the tool intuitive and easy to learn?

• Efficiency: Can users accomplish their tasks without undue ef‐
fort?

134

6.3. Usability and User Experience

• Dependability: Do users feel in control of the interaction?

• Stimulation: Is the tool engaging and motivating to use?

• Novelty: Does the design exhibit creativity and capture user
interest?

The attractiveness scale provides a general impression of the product.
Perspicuity, efficiency, and dependability collectively determine the
tool s̓ usability or pragmatic quality. The remaining scales, novelty and
stimulation, assess the user experience or hedonic quality.

UEQ offers a website4 and supplementary materials to assist research‐
ers and designers in evaluating the user experience of their interfaces.
The questionnaire is available in over 30 languages, accompanied by
a handbook and worksheets to facilitate result processing. The work‐
sheet for analysing results automatically compares the tool under
evaluation with a benchmark of 452 product assessments involving
20 190 participants (Schrepp et al. 2017). This comparison enables
researchers to gauge the relative usability and UX of their interface.

6.3.2. Methodology

We initiated a survey using the UEQ, inquiring whether participants
had experience with Dolos, Moss, JPlag, Plaggie, or other source code
similarity detection tools. For each tool a user had experience with,
we requested them to complete the UEQ. The survey was offered in
both English and Dutch, using the official UEQ translations.

Between 17th January and 1st April 2025, the DolosWeb UI featured a
banner with a direct link to this survey. Additionally, we emailed all
users who had contacted us regarding Dolos, requesting their parti‐
cipation and encouraging them to share the survey with colleagues.
Subsequently, we processed the results using the data analysis work‐
sheet provided on the UEQ website.

6.3.3. Results

Table 6.1 and figure 6.10 present the outcomes of the Dolos UEQ sur‐
vey, compared to the general UEQ benchmark. The results indicate

4www.ueq‐online.org

135

https://www.ueq-online.org

Chapter 6. Evaluation

Table 6.1. Survey results of the UEQ for Dolos per scale, including confidence
intervals (p=0.05). Values for each scale range from ‐3 (terrible) to 3 (excel‐
lent).

Scale Mean Std. Dev. N Confidence Conf. interval
Attractiveness 1.667 0.687 11 0.406 1.261 – 2.073
Perspicuity 1.614 0.719 11 0.425 1.189 – 2.039
Efficiency 1.591 0.615 11 0.364 1.227 – 1.954
Dependability 1.455 0.714 11 0.422 1.032 – 1.877
Stimulation 1.727 0.493 11 0.291 1.436 – 2.019
Novelty 1.477 0.541 11 0.320 1.157 – 1.797

Dolos (N=11) JPlag (N=3) Moss (N=4)

−3

−2

−1

0

1

2

3

Attractiveness

Dependability

Effi
ciency

Novelty

Perspicuity

Stim
ulation

Attractiveness

Dependability

Effi
ciency

Novelty

Perspicuity

Stim
ulation

Attractiveness

Dependability

Effi
ciency

Novelty

Perspicuity

Stim
ulation

Excellent (90–100 %)

Good (75–90 %)

Above average (50–75 %)

Below average (25–50 %)

Bad (0–25 %)

Score compared
to benchmark

Figure 6.10. Results of the UEQ for Dolos (N=11), JPlag (N=3), and Moss (N=4), compared to the
UEQ benchmark. The dot represents the mean scale value for each tool and the tick covers the
95% confidence interval.

136

6.3. Usability and User Experience

a favourable perception, with each scale mean categorised as above
average, good or excellent category.

In comparison to the benchmark, Dolos s̓ lowest performance is on the
perspicuity scale, though it still ranks in the upper tier of the above‐
average category. This scale reflects the ease with which users can
learn and become familiar with the tool. Given that Dolos must convey
complex information, this score is unsurprising. The other two scales
within the pragmatic quality group, are efficiency and dependability.
For these scales, Dolos s̓ mean score lies at the intersection of above
average and good, indicating that Dolos ranks among the top 25% of
tools in the general benchmark evaluated on these criteria.

Dolos excels particularly in the stimulation (categorising as excellent)
and novelty (categorising as good) scales. Together, these scales meas‐
ure the hedonic quality, or the UX perception, of Dolos.

Both JPlag and Moss s̓ mean values for each scale categorise as below
average or bad. While their confidence intervals are wide, the values
of Dolos are noticeably better than the other two tools. Dolos scores
substantially better for the novelty scale than JPlag and Moss.

From these results, we cautiously infer that we have achieved our
objective of developing a similarity detection tool with commendable
UI and UX that is both user‐friendly and easy to use.

6.3.4. Limitations

Given that the study primarily targeted Dolos users, the results are
likely biased towards our tool. This bias is evident in the responses
themselves, with one respondent explicitly praising Dolos.

Another limitation is the modest number of responses to the question‐
naire. Only 11 out of 29 respondents fully completed the UEQ ques‐
tions for Dolos, with even fewer completing the survey for JPlag (n=3)
and Moss (n=4). While we do include their results in figure 6.10 for
comparison, their confidence interval is too wide to draw meaningful
conclusions.

The UEQ manual stipulates that 20 to 30 responses yield stable results,
aiming for a precision (confidence interval width) of 0.5. The data
analysis worksheet specifies a precision range for our scales between
0.582 and 0.850.

137

Chapter 6. Evaluation

Therefore, the results of our UEQ study should be interpreted with
caution and not considered highly reliable. Nevertheless, they suggest
that users hold a positive perception of Dolos s̓ UI and UX.

6.4. Case study

This section is based on the eponymous section of our journal article “Do‐
los: Language‐agnostic plagiarism detection in source code” (Maertens,
Van Petegem, Strijbol, Baeyens, Jacobs et al. 2022). Note that this section
describes the application of Dolos in introductory programming courses led
by professor Peter Dawyndt. For a more comprehensive description of the
plagiarism cases discussed herein, please refer to the supplementarymaterial
of the original article. My contribution to this section in the original article
was reviewing the original text drafted by Peter Dawyndt. I have modified
the original text to align with the style and structure of this dissertation and
added a new section about the impact of Generative Artificial Intelligence
(GenAI).

This section explores the design and implementation of plagiarism
prevention and detection strategies for an introductory programming
course at Ghent University, with a particular emphasis on online learn‐
ing. In particular, we look into the role plagiarism detection tools play
in implementing these strategies and illustrate how their features can
be practically applied. Initially, Moss was used in the early iterations
of this course. However, starting in 2020, Dolos was introduced in
programming courses at Ghent University, Belgium.

We also report on our approach to handling plagiarism cases identified
at various stages of the course. Although a consistent plagiarism policy
has been maintained across multiple editions of the course, there is
a notable increase in plagiarism during tests and exams conducted
remotely due to the COVID‐19 pandemic (2020–2021 edition). Finally,
in 2024–2025 there is a drastic impact of GenAI in multiple courses.

6.4.1. Course structure

The introductory programming course at Ghent University is conduc‐
ted annually over a 13‐week semester, spanning from September to
December. The course is taken by a diverse cohort of undergraduate,
graduate and postgraduate students from various disciplines, predom‐
inantly sciences but excluding computer science. For the 2020–2021
edition, 440 students were enrolled.

138

https://onlinelibrary.wiley.com/doi/10.1111/jcal.12662#support-information-section

6.4. Case study

Figure 6.11.Outline of the Python Programming course that runs once per aca‐
demic year across a 13‐week semester. Students submit solutions to Dodona
for ten series with six mandatory exercises, two tests with two exercises
and an exam with three exercises. Collaboration among small groups of
students is expected for the mandatory exercises, but no collaboration is
allowed during tests and exams.

Throughout the course, students submit solutions to programming
exercises via the online learning environment Dodona (Van Petegem,
Maertens et al. 2023), where they receive immediate automated feed‐
back on each submission, including during tests and exams. This
feedback enables students to identify and rectify potential errors in
their code and submit revised solutions.

Each week, the course focuses on a specific topic of the Python pro‐
gramming language with six programming exercises assigned for com‐
pletion by the following week s̓ deadline (figure 6.11). These mandat‐
ory exercises are automatically graded through unit tests evaluated
in Dodona. Students have the opportunity to work on these exercises
during weekly computer labs, where they can collaborate in small
groups and seek assistance from teaching assistants. Submissions are
also accepted outside of lab sessions.

The course includes two graded tests — one mid‐term and one at the
semester s̓ end — where students have two hours to complete two
programming exercises. Additionally, a final exam is administered
post‐semester, allowing students three and a half hours to solve three
programming exercises. Tests and exams are conducted on‐campus
under supervision. Students are permitted to use their personal com‐
puters and access the internet “read only”: they can consult document‐
ation, forum posts, exercise solutions, and so on. Communication
with others, including artificial intelligence (AI)‐backed tools like pro‐
gramming assistants and chatbots, is prohibited.

139

Chapter 6. Evaluation

6.4.2. Plagiarism prevention

Students are permitted to check their solutions for correctness on
Dodona as often as they wish, even after the submission deadline,
without incurring penalties. This reduces the pressure to plagiarise,
as students do not feel limited by the number of allowed submissions,
and receive extensive feedback that allows them to continue improving
their solution. This approach necessitates a sufficiently large pool of
potential solutions for exercises to prevent resolution though guess‐
work.

Several strategies have been implemented to discourage students from
copying and modifying source code from others. Our approach varies
depending on the type of assessment; formative assessment (man‐
datory exercises) or summative assessment (tests or exams). Ghent
University considers plagiarism a form of fraud. When invigilators
or evaluators suspect a student of plagiarism, teachers must initiate a
formal procedure where an examination board determines whether
disciplinary measures are warranted. These measures can range from
adjusting the student s̓ score to exclusion from the university for up
to 10 years. The lecturer strictly adheres to these rules for tests and
exams, and address this topic during the first lecture. To ensure the
validity and reliability of “open book/open Internet” tests and exams,
new exercises are created and assignments are avoided where solu‐
tions or parts thereof are readily available online.

The approach to mandatory exercises is less straightforward, as col‐
laboration among small groups of students can be beneficial for learn‐
ing (Prince 2004). Students are encouraged to collaborate in groups of
no more than three students, exchanging ideas and strategies rather
than sharing literal code. Each edition of the course uses a new selec‐
tion of mandatory exercises compiled from previous test and exam
exercises, newly created exercises, and exercises last used four ormore
editions ago. By avoiding the reuse of recent exercises, the possibil‐
ity of solutions being exchanged between students from one year to
another is reduced.

Dolos is used to monitor submitted solutions for mandatory exercises,
both before and at the deadline. The limited number of possible solu‐
tions for the initial mandatory exercises makes it challenging to link
high similarity to plagiarism, as submissions contain only a few lines
of code and implementation strategies are limited. As the number
of possible solutions increases, so does the number of highly similar
solutions which are reliable indicators of code exchange among lar‐
ger groups of students. Strikingly, this often occurs among students

140

6.4. Case study

enrolled in the same study programme (figure 6.12). Typically, this
phenomenon emerges in week 3 or 4 of the course, at which the topic
of plagiarism is discussed in the next lecture. During this course, the
pseudonymised plagiarism graphs is presented as evidence and the
lecturer emphasises that the learning effect dramatically decreases
when working in groups of four or more students. Usually, in such
groups, only one or two students actively learn, while others merely
copy solutions. The lecturer addresses these students by highlighting
that while they may be proficient in programming and inclined to
share their solutions to assist peers, they are actually depriving their
fellow students of learning opportunities. Following this lecture, the
number of plagiarised solutions typically decreases substantially for
mandatory exercises.

The primary goal of plagiarism detection at this stage is prevention
rather than penalisation. The goal of this intervention is for students
to take responsibility over their learning. The realisation that teachers
can easily detect plagiarism, coupled with the impending test that eval‐
uates individual programming skills, usually results in an immediate
and sustained reduction in cluster sizes in the plagiarism graphs to a
maximum of three students. Simultaneously, it signal that plagiarism
detection is one of the tools used to identify fraud during tests and
exams. The entire student body is addressed about plagiarism only
once, without going into detail about how plagiarism detection itself
works, as overemphasising this topic might be ineffective and may
encourage students to bypass the detection process ‐ time better spent
on learning to code. Every three or four years, a cluster persists of stu‐
dents exchanging code for mandatory exercises over multiple weeks.
In such case, these students are individually addressed to remind them
of responsibilities, differentiating between those who share solutions
and those who receive them.

Tests and exams have a well‐delineated rule prohibiting verbal and
digital communication. Under normal circumstances, prior to the
COVID‐19 pandemic, students were restricted in their communication
as they took tests and exams on‐campus under the supervision of hu‐
man invigilators. However, they were permitted to use the internet to
consult information resources. Following each test and exam, we use
Dolos to detect and inspect highly similar code snippets among sub‐
mitted solutions and to gather convincing evidence of code exchange
or other forms of interpersonal communication. If a case is identi‐
fied as plagiarism beyond reasonable doubt, the examination board is
informed.

When exercises created for tests or exams are reused as mandatory

141

Chapter 6. Evaluation

Figure 6.12. Dolos plagiarism graphs for the same Python programming exer‐
cise Pyramidal Constants on Dodona, created for a test of the 2020–2021 edi‐
tion of the course (left) and reused as amandatory exercise in the 2021–2022
edition (right). Graph constructed for the last submission before the dead‐
line of 169 and 392 students respectively. Node colours indicate study pro‐
grammes of students. Similarity threshold set to 0.76 (left) and 0.83 (right)
respectively. All except two pairs of students submitted unique solutions
during the test. Submissions for the mandatory exercise show that most
students work either individually or in groups of two or three students. We
also observe some clusters of four or more students that exchanged solu‐
tions and submitted them with hardly any modifications.

142

6.4. Case study

exercises, there is generally a clear distinction: no high‐similarity pairs
among solutions submitted during the test or exam, but multiple high‐
similarity pairs found among solutions submitted for the mandatory
exercise (figure 6.12). This demonstrates that tracing high‐similarity
pairs is an effective method for monitoring student collaboration or
communication while working on programming exercises.

6.4.3. Impact of COVID-19 pandemic

Where only a single case of suspected plagiarism was filed during all
previous editions of the course since its first edition in 2006–2007, four
cases of suspected plagiarism have been filed to the examination board
during the 2020–2021 edition alone. Two of these cases occurred dur‐
ing tests and two during the exam. The evidence for each case was
carefully documented for the examination board and Dolos s̓ visual‐
isations were extremely useful for this purpose. The plagiarism graph
illustrates that there is a high number of possible solutions and helps
to convince students and board members that accidental high simil‐
arity is extremely unlikely. The compare view helps to disclose that
substantial amounts of source code are identical copies or have been
modified after copying as a deliberate act to obfuscate plagiarism.

When looking for explanations for this increase of plagiarism in tests
and exams, the only fundamental difference in the organisation of
the course is that all students took the 2020–2021 edition remotely due
to the COVID‐19 pandemic, including tests and exams. The lectures
switched from on‐campus colleges to live Zoom sessions. Students
could ask online help from teaching assistants during lab sessions,
primarily using the Dodona Q&A module for questions on specific
solutions or using MS Teams for general assistance. MS Teams was
recommended as an online collaboration tool, in combinationwith col‐
laborative coding and pair programming services provided by modern
Integrated Development Environments. Throughout the 2020–2021
edition of the course, there were no substantial differences in the oc‐
currence of high‐similarity pairs among solutions for the mandatory
exercises.

Lack of direct human supervision during tests and exams seems the
only reason for increased plagiarism. Apart from taking tests and ex‐
ams remotely, the same rules applied and they had the same online
nature as in all previous editions of the course. The lecturer delib‐
erately refrained from using an online proctoring tool to remotely
monitor the student s̓ behaviour and detect irregularities during tests

143

Chapter 6. Evaluation

Figure 6.13. Sworn declaration that students have to digitally sign in Dodona
at the start of each test or exam, together with a document describing the
agreements for online exams. The contents of both documents are shared
with students at the start of the course. The sworn declaration was newly
introduced with the organisation of remote tests and exams during the
COVID‐19 pandemic.

144

6.4. Case study

and exams. Mainly to avoid extra stress that students experience while
following proctoring protocols for the first time, and because it is be‐
lieved that current proctoring tools only create a false sense of security
and are too invasive on student privacy. A sworn declaration was intro‐
duced that students had to digitally sign at the start of each test and
exam (figure 6.13), following a best practice recommended by Ghent
University when taking remote exams. The document itself is not
legally binding, but rather serves as a reminder of regulations in the
Education and Examination Code that students accept when enrolling
at the university. Having such an institutional honour code, actively
informing students of this code, and signing these honour pledges
to remember them about the code, has been observed to reduce the
amount of cheating (LoSchiavo and Shatz 2011; McCabe, Trevino et al.
2001).

During this period, the lecturer remained convinced that “trust, but
verify” is a viable strategy for organising trustworthy assessments in
open and online learning environments. Even if high‐stake tests are
taken remotely. On the one hand, the strategy builds on educating
students about their learning behaviour and making them aware of
the importance of academic integrity. The instructor believes that four
suspected cases in two tests and an exam for 440 students is acceptable.
But only if cheaters get caught and appropriate disciplinary meas‐
ures are imposed for proven cases of plagiarism beyond reasonable
doubt.

6.4.4. Impact of GenAI

This subsection is a novel addition to this section, not included in our 2022
article. It was composed following an interview regarding professor Peter
Dawyndt’s observations, combined with my own teaching experiences and
those of other instructors.

Another significant event that profoundly impacted our programming
courses was the advent of Generative Artificial Intelligence (GenAI)
in the form of chatbots such as ChatGPT and programming assistants
such as GitHub Copilot and Gemini Code Assist. Although OpenAI
popularised this technology with ChatGPT at the end of 2022, it is only
in the academic year 2024–2025 that a steep increase is observed in the
adoption of this technology by students, accompanied by concerning
side effects.

145

Chapter 6. Evaluation

Course policy on GenAI

Following the public release of ChatGPT in 2022, instructors considered
the effects of GenAI tools on their courses. They observed that students
in introductory programming courses do not yet posses enough skill in
reading and understanding code to critically evaluate the code snippets
generated by GenAI. Consequently, students tend to accept almost
everything suggested by AI‐driven programming assistants (Prather,
Reeves et al. 2024). While using GenAI is successful inmost cases, there
are instances where the programming assistant fails to suggest code
solving the problem at hand. The studentsʼ over‐reliance on the agent
renders them unable to complete the task independently.

The instructors strongly believe that students need to learn the basics
of programming first, learning to read and understand code. Only then
will students be able to critically evaluate whether the suggestions of
GenAI are appropriate and continue where the ability of GenAI ends.

To safeguard student learning and evaluation validity, the use of GenAI
has been explicitly prohibited during tests and evaluations for these
courses. The only change made to the course itself, is adding the
following line in the rules of summative assessments:

The following actions are not allowed during the exam: […]
communicate with chatbots and programmer assistants that
use artificial intelligence.

The lecturer reiterates this rule at the start of every summative assess‐
ment (evaluations and exams), both during an announcement and in
the written rules referred to by the sworn declaration (figure 6.13).
Supervisors actively check for violations by closely monitoring student
screens during the assessment. Since its initial implementation, this
rule and examples of violations have been expanded to account for
the increased integration of GenAI in everyday services like search en‐
gines, office applications, and integrated development environments
(IDEs).

Observations during formative assessment

The rule prohibiting theuse of AI only applies to summative assessment
(evaluations and exams), and not to formative assessment (mandatory
programming exercises) as it is completely unfeasible to enforce such a
restriction. During the subsequent year 2023–2024, teaching assistants
noticed some students occasionally using GenAI, but observed no other
noteworthy changes in student behavior.

146

6.4. Case study

0

100

200

300

400

↑ Questions per week

0

100

200

300

400

Oct
Jan Oct

Jan Oct
Jan Oct

Jan Oct
Jan

∑=3287 ∑=2202 ∑=1045 ∑=1109 ∑=621

2020 2021 2022 2023 2024

Figure 6.14. Number of online questions asked through Dodona in the last five offerings of the
introductory programming course. Each year, we notice a drop halfway in the semester caused
by the mid‐term evaluation when there are no new programming exercises and students
instead solve exercises from previous years (where questions are disabled). Due to the COVID‐
19 pandemic, the 2020 offering was completely online and 2021 went online during the second
half of the semester, explaining the elevated number of questions during these offerings. This
number stabilises to 1100 in 2022 and 2023 when the course returned back to on‐campus
practical lab sessions. A substantial decrease in the number of questions is noticeable in 2024,
likely due to the increased adoption of GenAI.

However, during the current academic year 2024–2025, there is a
drastic decrease in practical lab attendance and student questions,
as shown in figure 6.14. This observation holds true in multiple pro‐
gramming courses, taught to both computer science (CS) and other
curricula. Teaching assistants observe that instead, students often
resort more quickly to GenAI tools to ask their questions, as the GenAI
will not only respond to their prompts but also suggest code likely
to solve the entire programming exercise — something that teaching
assistants would rarely do.

Despite GenAI often completely solving programming exercises, there
is no noticeable change in the amount of inter‐student plagiarism
during formative assessment. The pattern remains the same as in
previous years, with the amount of collaboration slowly increasing
during the first fewweeks of the semester, peaking at week 4 with large
clusters of students submitting similar or equal solutions. After an
intervention by the instructor the following week, the collaboration
decreases again to acceptable levels.

147

Chapter 6. Evaluation

Observations during summative assessment

Despite the rules prohibiting the use of GenAI during open internet
evaluations and exams, more students have been caught committing
plagiarism using GenAI than inter‐student plagiarism during the past
five years combined. At the end of 2023–2024, the first student was
caught using GenAI in the second exam period. In the current aca‐
demic cycle of 2024–2025, a total of eight students have already been
prosecuted for cheating using GenAI, with an equal amount of cases
in computer science (CS) curricula, than in non‐CS curricula. The first
exam period of the second semester still needs to occur, as well the
second exam period for both semesters, so the number of plagiarism
cases involving GenAI is expected to increase. In contrast, there has
not been a single case of inter‐student plagiarism this academic year.

This drastic increase is possibly caused by the fact that the opportunity
to plagiarise is now much greater. Whereas previously a student re‐
quired someone capable of solving the exercises andwilling to take the
risk to participate in plagiarism, and to set up a covert communication
channel with that student during the closely supervised assessment,
this is now no longer necessary. More and more web services and
applications integrate capable GenAI agents in their offering and en‐
able them by default, such as search engines, office tools, and the IDEs.
Even though the rules additionally mention that these agents are also
not allowed, the border between them continuously fades, additionally
making it harder to detect use of GenAI.

Additionally, students might start feeling a false sense of confidence,
because with the use of GenAI they were able to solve most program‐
ming exercises (Prather, Reeves et al. 2024). Illustrating this, an in‐
structor recalls a student approaching them after a mid‐term test to
confess their over‐reliance on GenAI tools. Because the student un‐
derstood everything suggested by the agent, they believed themselves
to be able to reproduce similar code. It was only during the test itself
where the student was left to their own devices, that they realised they
had no idea how to solve the exercise without external help.

The phenomenon of over‐reliance is not unique to GenAI. Students
pre‐GenAI would experience a similar confrontation with their over‐
confidence after relying toomuch onhelp from their friends during the
summative assessment periods. This is one of the reasons for closely
monitoring group sizes during formative assessment, the learning
effect greatly diminishes when students collaborate in groups of four
or more.

148

6.4. Case study

Consequences for instructors

Noticing this dramatic rise in fraudulent behaviour, instructors are
seeking ways to ensure the validity of assessments. One definitive
approach to prevent the use of GenAI by students, is to transition
towards written examinations that do not permit computer access.
However, this assessment format substantially diverges from the typ‐
ical programming environment familiar to students. Instructors are
justifiably aim to align the examination setting as closely as possible
with the studentsʼ practice environment. For programming exercises,
this necessitates continued internet access. Over the past years, uni‐
versities have increasingly shifted to a bring‐your‐own‐device (BYOD)
policy, with fewer communal computer systems available to execute
these assessments in a controlled environment. The latest develop‐
ments with GenAI have partially halted this shift and in their quest for
methods ensure valid assessments, tools have emerged to lock down
unauthorised programs and web services on student devices, such as
Safe Exam Browser5 and Schoolyear6.

Whereas during themandatory remote assessments requiredbyCOVID‐
19, instructors placed their trust in the honesty of students and the
capability to detect any violations, GenAI has caused this mentality to
change. In addition to traditional similarity detection tools, instructors
are considering invasive sandboxing and monitoring tools. This indic‐
ates a concerning erosion in their trust towards students (Luo 2025).
The reduced attendance and number of questions come across as a
lack of interest and eagerness to learn, profoundly affecting instructor
motivation as well.

Given the widespread agreement that GenAI is effectively unbannable,
instructors are actively considering how to incorporate this techno‐
logy in their courses, even permitting its use during summative assess‐
ments. The ACM/IEEE/AAAI report on Computer Science Curricula
in 2023 dedicates a section to integrating GenAI within CS curricula
(Kumar et al. 2024, section 4.3). The report suggest that while students
still need to learn how to write programs, the focus will shift from
writing code themselves to prompting AI agents to generate code. This
shift necessitates greater emphasis on teaching students how to design,
comprehend, verify, and modify code. However, as many existing pro‐
gramming assignments for introductory programming courses can
now be readily solved by GenAI, new assignments must be crafted to
assess these additional competencies. The question of how educators

5safeexambrowser.org
6schoolyear.com

149

https://safeexambrowser.org
https://schoolyear.com

Chapter 6. Evaluation

should adapt their assignments to the rapidly advancing capabilities
of GenAI remains open.

150

Chapter 7.

Experimental prototypes

While establishing the foundational principles of Dolos and demon‐
strating its efficacy across diverse scenarios, we performed a series of
exploratory experiments to identify potential enhancements for Dolos
and related work. These experimental prototypes were developed as
part of master s̓ theses in collaboration with the Dodona team. While
the majority of these experiments did not directly translate into fea‐
tures in the current iteration of Dolos, each contributed valuable in‐
sights that indirectly facilitated its enhancement. Some experimental
outcomes offered promising avenues for further research; however
resource constraints have thus far precluded us from advancing these
prototypes.

We have categorised these experiments into three domains: evaluation
(section 7.1), matching algorithms (section 7.2), and visualisations
(section 7.3).

7.1. Evaluation

To objectively assess the efficacy of tools designed to aid in source code
plagiarism detection, robust evaluation methods are essential. How‐
ever, as Novak et al. (2019) highlighted, this area of research currently
suffers from a notable gap:

What was observed while answering our research questions, is
that there are missing standard datasets, metrics for evaluation,
and objective comparisons of plagiarism detection tools.

This deficiency complicates the determination of optimal techniques
and approaches for detecting plagiarism.

151

Chapter 7. Experimental prototypes

7.1.1. Challenges

Currently, there are no standardised, publicly available datasets ac‐
companied by a “ground truth” that identifies plagiarised source files
within the dataset. Furthermore, the absense of standardised metrics
andmethods for benchmarking tools that support plagiarismdetection
exacerbates this issue.

Datasets

Novak et al. (2019) recognise the SOurce Code re‐use (SOCO) dataset as
the most widely used resource in this domain. We also employed this
dataset for the benchmarks described in section 6.2 of this dissertation.
Refined by Flores et al. (2014) from a corpus published by Arwin and
Tahaghoghi (2006), the SOCO dataset comprises a collection of Java and
C source files. The dataset s̓ labelswere derived by gathering suspicious
pairs using JPlag (section 2.4.2) and manually inspecting the selected
pairs. However, using a similarity detection tool to filter pairs for
constructing a ground truth introduces a bias, as it discourages the
detection of cases not initially identified by the similarity detector.

Additionally, the dataset s̓ quality is called into question due to the
imperfect inter‐annotator agreement scores: 0.480 (moderate agree‐
ment) for the C dataset and 0.668 (substantial agreement) for the Java
dataset. Flores et al. (2014) do not specify whether the union or inter‐
section of the annotator s̓ labels was selected, further complicating
the interpretation of results achieved using this dataset.

We believe that the challenge of constructing a benchmark dataset for
plagiarism is intrinsic to its domain. First, establishing a ground truth
from actual student submissions is fraught with uncertainty, as it is
impossible to definitely ascertain whether a student has plagiarised
without their admission. Students who successfully evade detection
have no incentive to confess, thereby concealing effective plagiarism
strategies within datasets reliant on detected and prosecuted cases.
Second, the definition of what constitutes plagiarism varies among
instructors, necessitating a clear and precise delineation of the ground
truth. Third, student submissions are personal data that cannot be
shared publicly without the correct form of informed consent and
anonymisation, complicating its construction.

152

7.1. Evaluation

Methods andmetrics

A second challenge in evaluation source code similarity detection tools
lies in the choice of methods and metrics employed. These tools pro‐
duce pairwise comparisons of submissions, each associated with a
similarity value. However, this value varies across different similar‐
ity detection tools, rendering direct comparisons of reported values
impossible. Consequently, most studies include similarity detection
tools as binary classifiers, categorising pairs as either plagiarised or
non‐plagiarised.

Nonetheless, converting similarity values into binary classifications
can be approached in several ways. Similarity tools often report pairs
exceeding a user‐adjustable similarity threshold. While this threshold
could serve as a basis for binary classification—where reported pairs
deemed plagiarised and others are not—the relative similarity values
are highly dependent on the programming assignments under exam‐
ination. An alternative method involves selecting the top 20% of pairs,
ranked by similarity, as plagiarised percentage of pairs sorted accord‐
ing to their similarity as plagiarised (Misc et al. 2016). However, the
effectiveness of this approach is heavily influenced by the prevalence
of plagiarism within the dataset.

Moreover, when evaluating similarity detection tools as binary classifi‐
ers, the selection of an appropriate metric remains a critical consider‐
ation. Novak et al. (2019) observed that various studies utilise different
metrics, including precision, recall, sensitivity, F1, and Fβ, further
complicating the comparative analysis of tool performance.

7.1.2. Dataset annotation and benchmark standardisation

The contributions in this subsection are described in more detail in chapter 2
of the master’s dissertation under my supervision by Arne Jacobs (2022).

To address the aforementioned challenges, Jacobs (2022) developed
a prototype benchmark suite, Apate, designed to evaluate similarity
detection tools. The objectives of this benchmark were threefold:

• Standardisation: Facilitate the publication of the dataset and
evaluation code, thereby establishing a standardised benchmark
suite.

• Obfuscation detection: Assess the capability of similarity detec‐
tion tools to identify various categories of code obfuscations.

In Greek
mythology, Apate
is the godess of
deceit.

153

Chapter 7. Experimental prototypes

• Granular ground truth: Provide a more detailed ground truth
that specifies which parts of source files were plagiarised, en‐
abling a finer‐grained evaluation.

The Apate prototype consisted of three primary components: an an‐
notation format and demonstrative dataset, an evaluation metric, and
a benchmark implementation.

Dataset and ground truth annotations

The annotations offered by the SOCO dataset indicate which pairs of
source files exhibit code reuse, offering a binary classification: either
a pair is deemed plagiarised or not. In contrast, within Apate, we
developed an annotation format that specifies the type of plagiarism
present in the source files and pinpoints the location of the reused code
regions. The format consists of a single JavaScript Object Notation
(JSON) file for a given corpus that lists all instances of plagiarism, the
corresponding source files, the precise locations of matching content
within those files, and the obfuscationmethods employed to transform
one source file into another. This granular approach addresses the
subjectivity of plagiarism by providing contextual information that
justifies the classification.

The Apate benchmark suite includes amanually crafted and annotated
corpus of Python source files to demonstrate this format. However, due
to the labour‐intensive nature of creating and annotating such a corpus,
the dataset is limited to 18 source files: two original submissions and
several plagiarised derivatives utilising eight different obfuscation
methods.

Evaluationmetric

Given the granularity of the annotation format, we can employ ametric
that evaluates a similarity detection tool s̓ ability to identify matching
segments of source code. The evaluation metric used in the Apate
benchmark calculates the true positive rate (TPR) and true negative rate
(TNR) of detected lines of code, providing a more nuanced assessment
of tool performance.

154

7.1. Evaluation

Figure 7.1. Screenshot of theApate benchmmark user interface (UI) presenting
the results of a benchmark.

Benchmark implementation

The benchmark includes an implementation to execute these evalu‐
ations on source code similarity detection tools. It utilises the annota‐
tion format to measure each tool s̓ capability to detect obfuscations
and offers a UI to present the evaluation results (figure 7.1).

This benchmark includes source code similarity detection tools through
an adapter interface: a single Python class featuring methods to run a
similarity detection tool and collect the similarity detection results in
a standardised format. Adding a new tool to the evaluation is straight‐
forward, requiring only the implementation of these two methods for
the tool in question, before running the benchmark.

7.1.3. Simulated plagiarism dataset

The contributions in this subsection are described in more detail in the
master dissertation under my supervision by Raymond Bultynck (2023).

Manually creating an annotated corpus of plagiarised source files is
laborious and typically results in a corpus limited to a single program‐
ming language. The review by Novak et al. (2019) highlights that the

155

Chapter 7. Experimental prototypes

literature predominantly focuses on Java and C++, with a notable lack
of tools and datasets for other programming languages.

In the master s̓ dissertation of Bultynck (2023), we developed a proto‐
type for a plagiarism dataset generator named Seth. This generator
aims to apply obfuscations to a collection of source files, creating
modified copies that mimic plagiarism.

Processing source files

Seth achieves this by parsing a source file into its concrete syntax tree
(CST), applying obfuscations and transformations to the CST, and then
reconstructing the source code from this modified CST. By leveraging
the tree‐sitter1 parser generator, also employed by Dolos, Seth can
utilise parsers for numerous programming languages through a unified
Application Programming Interface (API) for the resulting CST.

However, syntax token types are not standardised across tree‐sitter
grammars. For instance, import statements in Python are labelled
as import_statement, while in Java, they are labelled as import_-
declaration. To address this, Seth requires a configuration file for
each programming language that maps the semantic meaning of some
syntax tokens to the generator. The proof‐of‐concept developed during
this thesis provides a configuration for Python and includes instruc‐
tions for creating configurations for other programming languages.

Implementing obfuscations

Seth offers a generic interface for implementing various obfuscations.
Each obfuscation modifies the underlying CST and records specific de‐
tails about the exact transformations applied. The generator then sum‐
marises the alterations in a machine‐readable annotation format.

The prototype does not implement all obfuscations described in sec‐
tion 1.3.2, as it was exploratory and focussed on viability rather than
completeness. Additionally, someobfuscations are too language‐specific
to be applied successfully across different programming languages.
For example, the advanced structural obfuscation method “changing
statement specification” (OM_11_AS) requires specific knowledge about
equivalent operations in particular programming languages.

However, the obfuscations identified as impossible by Bultynck (2023)
are primarily advanced structural and logical obfuscations, which

1tree‐sitter.github.io/tree‐sitter/

Seth is the ancient
Egyptian deity of
deserts, storms,
violence and
foreigners.

156

https://tree-sitter.github.io/tree-sitter/

7.2. Matching algorithms

are also more challenging for students to apply. Therefore, there is
a lesser need to simulate these obfuscations in generated datasets.
Nonetheless, it remains possible to apply these obfuscations manually
to the generated dataset.

7.1.4. Lessons learned

The experiments conducted by Bultynck (2023) and Jacobs (2022) un‐
derscore the challenges inherent in creating a source code plagiarism
benchmark. Constructing a benchmark from actual student submis‐
sions is problematic due to the impossibility of distilling a perfect
ground truth.

While we demonstrated the feasibility of creating synthetic datasets,
either throughmanual curation, aswithApate (section 7.1.2), or through
automated generation, as with Seth (section 7.1.3), each approach
presents its own limitations. Manually creating and annotating a pla‐
giarism dataset is labour‐intensive, whereas automatically generating
plagiarism, while efficient, cannot simulate all forms of plagiarism.

A potential solution to these challenges lies in the development of a hy‐
brid corpus. This corpus would combine confirmed instances of actual
plagiarism with synthetic plagiarism, encompassing both automatic‐
ally generated simple plagiarism, and manually recreated complex
plagiarism. Such an approach might more closely approximate an
adequate source code plagiarism benchmark.

7.2. Matching algorithms

A second area of experimentation focuses on Dolos s̓ similarity de‐
tection pipeline. The Winnowing algorithm employed by Dolos, as
described in chapter 3, selects representative fingerprints from each
source file. These fingerprints are then used to calculate a similarity
value and reconstruct matching code fragments. One known vulnerab‐
ility of this algorithm is its susceptibility to automated attacks, where
numerous small series of syntax tokens, such as redundant lines of
code, are added to the original source file (Devore‐McDonald and Ber‐
ger 2020).

The current matching algorithms in Dolos can handle a large num‐
ber of submissions but are still limited in scope. Dolos offers minimal

157

Chapter 7. Experimental prototypes

support for analysingmultiple files per submission ormultiple submis‐
sions per student, primarily due to the challenges posed by the sheer
number of source file pairs that would need to be processed. A more
optimised matching algorithm could mitigate these issues, enabling
more advanced analyses.

7.2.1. Tree-matching

The contributions in this subsection are described in more detail in the
master’s dissertation under my supervision by Arne Jacobs (2022).

To enhance Dolos s̓ robustness against obfuscations that introduce
redundant lines of code, we explored the feasibility of performing
similarity detection directly on the syntax tree instead of the serialised
list of syntax tokens. This approach involves searching for “unordered
subtree isomorphism” between the syntax tree of source files (Valiente
2021). The advantage of this method is that it allows matches to skip
branches in the syntax tree, potentially improving detection accur‐
acy.

Jacobs (2022) developed the prototypes Erato and Erato++, which im‐
plement a maximum common subtree isomorphism algorithm (Dinitz
et al. 1999; Valiente 2021). However, the results, evaluated using the
Apate benchmark (section 7.1.2), were subpar, as shown in figure 7.2.
While Erato and Erato++ reported fewer false positives on the spe‐
cialised Apate benchmark, they yielded lower‐quality results on the
SOCO benchmark and operated significantly slower. Consequently, we
discontinued the development Erato and Erato++.

Sağlam, Hahner et al. (2024) later successfully applied an alternative
approach to achieve resilience against automated obfuscation attacks
by normalising the syntax tree. Dolos could potentially integrate this
approach, as the normalisation step should be applied before serial‐
ising the syntax tree and is independent of the matching algorithm.

7.2.2. Syntax tree preprocessing

The contributions in this subsection are described in more detail in the
master’s dissertation under my supervision by Michiel Lachaert (2025).

Teachers frequently observed that comments significantly influenced
the similarity scores reported by Dolos. This is because tree‐sitter
includes comments as separate syntax tokens in the parse tree. In one

Erato is one of the
ancient Greek
muses, godess of
literature, science
and the arts.

158

7.2. Matching algorithms

(a) True positive rate (TPR)

(b) True negative rate (TNR)

Figure 7.2. Results of Erato, Erato++ and Dolos on the Apate benchmark. Erato
and Erato++ report fewer matches, resulting in a higher true negative rate
(TNR), but a lower true positive rate (TPR) than Dolos.

159

Chapter 7. Experimental prototypes

notable case, a plagiarised pair of submissions differing only by com‐
ments yielded a similarity percentage of 80%. While this was sufficient
for detection, it also led to the discovery of another plagiarised pair
by the same students for a different programming assignment that
had a similarity percentage of 50% that differed in some comments
and simple obfuscations. Furthermore, by only adding comments to
identical submissions, we were able to reduce the similarity reported
by Dolos to 32%.

In response to these observations, Lachaert (2025) introduced a pre‐
processing step to filter out comment tokens from the serialised syntax
tree. This feature was publicly released in version v2.9.0 of Dolos. With
this functionality enabled, Dolos now reports a similarity of 98% for the
plagiarised pair differing only by comments, and 80% for the second‐
ary plagiarism case with additional obfuscations. This enhancement
now immediately highlights the second plagiarism pair as suspicious,
where it was previously hidden.

We have noted that Dolos now increasingly reports higher similarities
for short submissions, which are often primitive attempts at solving
an exercise with only initial code present. However, we accept this
minor trade‐off, as teachers are able to quickly identify these pairs as
false positives.

7.2.3. Suffix trees

The contributions in this subsection are described in more detail in the
master’s dissertation under my supervision by Michiel Lachaert (2025).

A problem with the current similarity detection pipeline is the compu‐
tational expense of calculating all submission pairs. When analysing n
submissions, the number of submission pairs is n(n−1)

2 , resulting in an
inherentΘ(n2) process. Additionally, calculating the longest common
substring (LCS) for a single pair using a Θ(m2) dynamic programming
algorithm, wherem is the length of the longest token sequence, further
exacerbates the computational load.

A suffix tree is a trie data structure that stores all suffixes of a string,
and can be constructed inΘ(n) time for a string of length n (Ukkonen
1995). Suffix trees enable efficient algorithms on the stored strings,
such as finding the LCS in Θ(n) time for a string of length n. It is also
possible to build a generalised suffix tree that stores multiple strings.

160

7.2. Matching algorithms

Plutokiller

SOCO C

SOCO Java

0 s 5 s 10 s 15 s 20 s 25 s 30 s 35 s 40 s
Time →

12.9 s
35.5 s

0.7 s
1 s

2.6 s
4.3 s

Dolos Suffix tree prototype

(a) Total run time (in seconds) of Dolos compared to the suffix tree prototype.

Plutokiller

SOCO C

SOCO Java

0 MB 200 MB 400 MB 600 MB 800 MB 1000 MB 1200 MB
Memory usage →

1,376 MB
1,165 MB

127 MB
151 MB

341 MB
339 MB

Dolos Suffix tree prototype

(b) Total memory usage of Dolos compared to the suffix tree prototype.

Figure 7.3. Run time and memory usage of Dolos compared to the suffix tree
prototype, averaged over 3 independent runs. The prototype uses slightly
more memory, 20% more for the Plutokiller dataset, but offers a 275%
speedup on this dataset.

161

Chapter 7. Experimental prototypes

Lachaert (2025) prototyped a similarity detection pipeline for Dolos
using a generalised suffix tree as index structure for storing the serial‐
ised syntax tokens from submissions. This prototype stores all tokens
instead of aWinnowed set of fingerprints and enables faster computa‐
tion of submission pairs with similarity and longest fragment metrics.
Another advantage of the suffix tree is its intuitive nature as a data
structure for storing match information, opening avenues for new effi‐
cient techniques and algorithms to enhance similarity detection. One
such improvement would be the ability to store not only the final sub‐
mission before the deadline but all submissions, enabling historical
analysis to support plagiarism detection.

Figure 7.3 visualises the preliminary benchmark results comparing
the current version of Dolos with the prototype using suffix trees. We
notice a slightly increased memory footprint, up to 20%more when
indexing the Plutokiller dataset with 1 162 files. However, this pro‐
totype offers a substantial run time improvement of 275%, reducing
the analysis from 35 seconds to 12 seconds. While these results are
promising, integrating this technique into Dolos s̓ similarity detection
pipeline and connecting it to the Dolos UI still requires some effort.

7.2.4. Lessons learned

While the evaluation in chapter 6 demonstrated that Dolos is a capable
similarity detection system for aiding plagiarismdetection, we acknow‐
ledge that our current implementation has certain limitations.

A tree‐based approach, such as that employed by Erato and Erato++
(section 7.2.1), did not yield superior results compared to the current
algorithm. The effectiveness of detecting matches using serialised
syntax tokens in submissions was confirmed by achieving compar‐
able similarity detection results with an algorithm using suffix trees
(section 7.2.3).

We also discovered that small preprocessing steps, such as filtering out
comments (section 7.2.2), can have a beneficial impact on the similar‐
ity detection results. While algorithmic improvements remain valid
approaches, we should also explore similar preprocessing transforma‐
tions, such as normalising the syntax tree to safeguard against more
complex obfuscations (Sağlam, Brödel et al. 2024).

162

7.3. Visualisations

7.3. Visualisations

The contributions in this section are described in more detail in the master’s
dissertation under my supervision by Maxiem Geldhof (2022).

The interactive dashboards provided by the Dolos UI have been a sig‐
nificant area of exploration. A primary goal of Dolos is to present
the similarity detection results in a manner that allows instructors to
efficiently and effectively check for plagiarism. The master s̓ thesis
by Geldhof (2022) explored various enhancements to the dashboards,
with major contributions including the addition of the overview and
cluster dashboards.

Two explored features, although not ultimately integrated into the
Dolos UI, offered intriguing ideas: an interestingness metric (sec‐
tion 7.3.1) and semantic analysis (section 7.3.2).

7.3.1. Interestingness metric

From its early development stages, Dolos provided three metrics: sim‐
ilarity, total overlap, and the longest fragment. Each metric offers a
unique perspective on the extent of plagiarism between a pair of sub‐
missions. However, this approach necessitates inspecting the same
list of pairs multiple times, each time ranked according to a different
metric.

To address this, Geldhof (2022) devised an interestingness metric, which
combines these three metrics into a single value. This metric is cal‐
culated for each submission, rather than for a submission pair, and
is determined as a weighted sum of the maximum similarity, total
overlap and the longest fragment with any other submission under
analysis. A dedicated page would list all submissions sorted by this
interestingness metric, placing the most interesting submissions at
the top.

7.3.2. Semantic analysis

Another experiment conducted during this thesis involved enhancing
matched code fragments between submission pairs with semantic
information. The rationale behind this enhancement, was that cer‐
tain matching code fragments are more indicative of plagiarism than
others.

163

Chapter 7. Experimental prototypes

Figure 7.4. Screenshot of the comparison page indicating a matching function using the semantic
analysis functionality.

For instance, a matching code fragment consisting solely of import
statements is not indicative of plagiarism. The Dolos similarity de‐
tection pipeline often matches these import statements, even when
the imports themselves differ, as identifiers are masked to protect
against obfuscations involving identifier renaming. In programming
languages like Java, which frequently employ lengthy import state‐
ment prefaces, these matches could obscure genuine instances of
plagiarism.

To mitigate this issue, Geldhof (2022) introduced a semantic analysis
step to identify the program components included in a match. This
prototype could detect whether a matching code fragment encom‐
passed a class, function, or loop and display this information in the
Dolos UI on the comparison page (figure 7.4).

However, this prototype encountered performance issues, significantly
slowing down the analysis. We concluded that the performance impact
outweighed the benefits, leading to the decision not to include this
functionality in the Dolos UI.

7.3.3. Lessons learned

The experiments conducted by Geldhof (2022) led to a major redesign
of the Dolos UI that eventually culminated in Dolos v2.0 (section 4.8.4).
We further expanded upon the overview and cluster dashboards ini‐
tially prototyped during this master thesis, integrating these pages into
the Dolos UI. These additions are extensively described in section 4.3
and section 4.5.

Another outcome of the interestingness and semantic experiments
was a shift towards a submission‐centered approach, rather than a

164

7.3. Visualisations

pairs‐centered one. The submission dashboard (section 4.7) evolved
from these ideas, and has been positively received by Dolos users.

165

166

Chapter 8.

Conclusions

In section 1.5 we identified substantial shortcomings in addressing
source code plagiarism in educational contexts. In response, we for‐
mulated the research goal of developing a new source code similarity
detection tool that adheres to modern standards with the following
features:

• Proven, high‐quality algorithms for similarity detection.

• Language‐agnostic with broad programming language support
and easy extensibility.

• Excellent user interface (UI) and user experience (UX)

• Visualisations that assist educators in preventing and detecting
plagiarism in various settings (formative and summative assess‐
ment).

• Easy to use and install.

• Open‐source and flexible to accommodate diverse use cases.

• Good software design, well‐maintained and up to date depend‐
encies.

• Respecting teacher and student privacy and compliant with pri‐
vacy regulations.

• Conforming to modern security standards.

In this chapter, we conclude this doctoral research by summarising
our results, discussing the impact of our work, and exploring avenues
for further improvements. Finally, we conclude with a critical examin‐
ation of Generative Artificial Intelligence (GenAI) and the impact on
programming courses and computer science curricula.

167

Chapter 8. Conclusions

8.1. Results

The primary outcome of this dissertation is Dolos, a new software
ecosystem for source code similarity detection. Dolos includes a self‐
hostable web service and Application Programming Interface (API), a
command‐line interface (CLI), and software libraries designed to aid
in detecting plagiarism in source code. We can summarise the main
features and contributions to the state of the art as follows:

Dolos offers high‐quality algorithms for similarity detection. Its simil‐
arity detection pipeline, discussed in detail in chapter 3, builds upon
theWinnowing‐algorithm championed by the popular similarity de‐
tection tool Moss (section 2.4.1). Using benchmarks, we demonstrated
that Dolos performs on par with other similarity detection tools in
terms of its predictive power (section 6.2).

Powerful and innovative visualisations complement the similarity
detection pipeline by presenting its results in interactive dashboards.
These dashboards allow users to quickly assess the amount of plagi‐
arism and zoom in on the details when necessary. Where other tools
present an overwhelming list of pairwise comparisons, Dolos offers
a more structured view with its plagiarism graph visualisation, and
focuses on clusters and individual submissions.

Dolos additionally serves as a plagiarism prevention tool. Its an‐
onymisation feature allows showcasing the capabilities of Dolos to
students, serving as an effective deterrence against plagiarism. This
feature might be even more important than its plagiarism detection
capabilities, as the end goal of instructors is to avoid plagiarism from
happening.

We offer Dolos as an open‐source and free‐to‐use ecosystem of mod‐
ules providing flexibility for its different users. Thesemodules cater to
the needs of a diverse set of users. Instructors can perform similarity
detection straight from their browser using the accessible Dolos web
service (section 5.6). While power‐users, researchers and developers
can freely integrate, build, and improve upon Dolos. This flexibility
has incubated its application outside educational contexts (section 8.2).
The open‐source Massachusetts Institute of Technology (MIT) licence
ensures that this technology remains accessible (section 5.1.4).

The similarity detection pipeline of Dolos is language‐agnostic, sup‐
porting a theoretically endless number of programming languages
(section 5.2). The loose coupling between the similarity detection al‐
gorithms and the programming language parsers allow for rapidly

168

8.1. Results

integrating new programming languages without reducing its qual‐
ity.

Dolos provides a secure and privacy‐friendly alternative to other simil‐
arity detection tools. The free‐to‐use instance of our web service does
not track users and is designed with security in mind. We support
and encourage our users to self‐host this service using containers (sec‐
tion 5.7.3), allowing them to use a user‐friendly web service without
compromising their and their studentsʼ privacy.

All these features are developed while focusing on excellent UX and UI
design, to lower the barrier for instructors to check for plagiarism. Us‐
ing user studies (section 6.3) and a survey (section 6.3.1), we confirmed
that Dolos is accessible and user‐friendly. We specifically removed the
hurdle of installing software by offering a free‐to‐use instance of our
web service. This allows Dolos to be integrated directly into learning
environments, enabling instructors to seamlessly perform source code
similarity detection analysis within their browser (section 5.6.2).

8.1.1. Research contributions

While Dolos as a similarity detection system is a concrete and prac‐
tical contribution to the state‐of‐the‐art, we additionally describe our
secondary research contributions.

Techniques for similarity detection tools

We demonstrated the capability of generalised parser generators in
similarity detection tools. Existing similarity detection tools employed
either parser modules specific for each programming language or
use less‐powerful lexers. We have built Dolos s̓ similarity detection
pipeline on top of the Tree‐sitter parser generator framework that
parses code into a syntax tree and are able to deliver detection results
that are on‐par with the state‐of‐the art.

Evaluation of similarity detection tools

We provided a novel methodology to benchmark similarity detection
tools, described in section 6.3.2. Other articles evaluated the effective‐
ness of their tool by comparing a fixed similarity threshold, or only
comparing the number of reported similarity pairs. Our benchmark
methodology picks the optimal similarity threshold for each tool to
classify data points, allows comparing different similarity metrics

169

Chapter 8. Conclusions

fairly. Other researchers have started applying our methodology in
their research (Slobodkin and Sadovnikov 2023).

Programming course design

Chapter 1 on educational source code plagiarism and the case study in
section 6.4 provide an evidence‐based approach to combat plagiarism
in programming courses. The case study provides inspiration for ways
to structure courses preventing plagiarism. Additionally, the case
study illustrates the effects of major events like a global pandemic
warranting remote examination and the introduction of GenAI as an
easily accessible way to cheat.

Similarity detection visualisations

Dolos reimagines how similarity detection results with the visualisa‐
tions offered by its UI. The interactive plagiarism graph (section 4.4)
offers a quick and flexible method to explore similarity detection res‐
ults. The plagiarism graph including automatic threshold estimation
(section 4.3.2), cluster silhouette highlighting, and advancednavigation
capabilities, offers far mure functionality than similar visualisations
present in the state of the art. The similarity histogram (section 4.3.1)
innovates displaying the similarity distribution by only using the max‐
imum similarity for each submission as a data point instead of using
all pairwise similarities. Finally, Dolos pioneers a submission‐first ap‐
proach that, combinedwith clusters, reduces the information overload
present in other tools when listing the quadratic explosion of pairwise
comparisons.

8.2. Impact

Since its inception, Dolos has garnered attention from external in‐
structors and researchers. Users frequently reach out with questions,
bug reports, feedback and expressions of gratitude. By aggregating
these testimonies, we have been able to chart the diverse applications
of Dolos. Predictably, its primary impact lies in plagiarism detection
for programming exercises. However, we were pleasantly surprised
to discover that Dolos is also employed in non‐educational contexts,
underscoring its versatility.

170

8.2. Impact

8.2.1. Plagiarism detection in education contexts

Dolos was initially developed for detecting plagiarism in programming
exercises, and this remains its most prevalent use case. Among its
users, we observe a broad spectrum of applications. We have received
communications from individual educators utilising Dolos, as well as
from developers integrating it into their learning environments.

Integrations with other platforms

Various programming platforms have seamlessly integrated Dolos
as their plagiarism detection service. We have previously described
its integration with our own platform, Dodona, and that with Aalto
University s̓ learning management system (LMS), A+, in section 5.6.2.
However, we are aware of several other platforms that have adopted
Dolos.

One of the first external platforms to integrate Dolos was Codio1, a
commercial platform for programming exercises based in the United
States. Codio offers a code similarity checker powered by Dolos, in
addition to other plagiarism detection methods like code playback and
keystroke logging2.

The Media Research Lab at the Technical University of Ostrava, Czech
Republic, has integrated Dolos in their open‐source LMS for program‐
ming courses, Kelvin3. Initially, they used Moss for their plagiarism
detection needs but, dissatisfied with its sluggishness and unpredict‐
able availability, they supplemented it with Dolos.

The University of Groningen, the Netherlands, has an in‐house LMS
Themis4, to support their computer science courses. They host their
own instance of Dolos s̓ web service and have integrated this with
Themis to meet their similarity detection needs.

8.2.2. Detecting plagiarism by LLMs

Anunexpected application of Dolos s̓ similarity detection capabilities is
in identifying plagiarism generated by Large Language Models (LLMs).
These models have demonstrated exceptional proficiency in solving

1codio.com
2codio.com/plagiarism‐detection‐for‐source‐code
3github.com/mrlvsb/kelvin
4gitlab.com/rug‐digitallab/products/themis

171

https://codio.com
https://codio.com/plagiarism-detection-for-source-code
https://github.com/mrlvsb/kelvin
https://gitlab.com/rug-digitallab/products/themis

Chapter 8. Conclusions

programming tasks and programmers increasingly adopt GenAI with
tools such as GitHub Copilot5 and Gemini Code Assist6. However, LLMs
require vast datasets for training, primarily sourced from publicly
available information on the internet, regardless of intellectual prop‐
erty rights prohibiting such use. This can lead to LLMs reproducing
code fragments from their training data, causing programmers using
GenAI to inadvertently commit copyright infringement as well.

Another problem arises when assessing LLM capabilities by checking
their performance on publicly available tests or challenges. Since
participants often publish their solutions to those tests and challenges,
there is a risk that an LLMs̓ training corpusmight be contaminatedwith
those solutions. This contamination may cause the LLM to reproduce
these solutions instead of demonstrating the ability to generalise to
unseen tasks (Carlini et al. 2023; Dekoninck et al. 2024).

Detecting those problems is, in essence, equivalent to detecting source
code plagiarism. Consequently, multiple research articles refer to
Dolos to check for dataset contamination or intellectual property vi‐
olations (Abad et al. 2024; Chan et al. 2025; Riddell et al. 2024;Wang,
Shao, Bhandari et al. 2025;Wang, Shao, Nabeel et al. 2025; Z. Yu et al.
2023). We highlight two of these articles below.

OpenAI’s MLE-Bench

OpenAI7, the company behind the popular LLM GPT‐3, its successors
(GPT‐4, OpenAI o1, etc.), and thewidely usedweb service ChatGPT, has
developed a benchmark for LLM agents performing machine learning
engineering (MLE) tasks (Chan et al. 2025). This benchmark, named
MLE‐bench8, evaluates artificial intelligence (AI) agents on their cap‐
ability to solve MLE tasks by challenging them to solve competitive
problems published on the Kaggle9 data science competition platform.
The AI agents must perform all steps required to train a new model
for each task, including preparing datasets, training the model, and
running experiments against their model. The benchmark compares
each agent s̓ model performance to that of the publicly available Kaggle
leaderboard to assess the agent performance for MLE tasks.

5github.com/features/copilot
6codeassist.google
7openai.com
8openai.com/index/mle‐bench/
9kaggle.com

172

https://github.com/features/copilot
https://codeassist.google
https://openai.com
https://openai.com/index/mle-bench/
https://kaggle.com

8.2. Impact

One of the risks identified by OpenAI s̓ researchers is that the LLM used
by the agent might be contaminated with existing successful submis‐
sions for these challenges, as Kaggle competition participants tend to
publish their solutions on public blogs or source code repositories. To
address this risk, the benchmark uses Dolos to perform a similarity
check of the agent s̓ code against the top 50 associated solutions for the
relevant Kaggle challenge. The benchmark disqualifies agent solutions
when Dolos reports a similarity above 60% with any of the existing
solutions.

CodeIPPrompt

The Computer Security and Privacy Laboratory fromWashington Uni‐
versity in St. Louis, United States, conducted research to test whether
LLMs violate intellectual property by producing code protected by a re‐
strictive licences. To this end, Z.Yuet al. (2023) developedCodeIPPrompt10,
a tool designed to elicit LLMs to generate licenced code by prompting
them with function signatures of such code fragments. The prompt
response is checked for its similarity against the original code by using
Dolos and JPlag (section 2.4.2).

All LLMs investigated, including GPT‐4 and Copilot, were found to
violate intellectual property by generating code under a restrictive
licences. This study further revealed that publicly available datasets
intended for training or fine‐tuning LLMs contain code under such
licences.

The article continues by suggesting approaches to avoid these models
from infringing intellectual property rights. Building further on the
work of Z. Yu et al. (2023), Abad et al. (2024) presents such an approach,
also using Dolos and JPlag to validate whether LLMs generate fewer
protected code fragments when using their techniques.

8.2.3. Malware classification

In a software supply chain attack, malicious code is inserted into a soft‐
ware product, often indirectly by targeting one of the often thousands
of dependencies of that software project (Ohmet al. 2020). Upondiscov‐
ering suchmalware, security researchers try to identify other software
infected by the same malicious code. They achieve this by searching
for an indicator of compromise (IoC), such as a hash, code fragment,

10github.com/zh1yu4nyu/CodeIPPrompt

173

https://github.com/zh1yu4nyu/CodeIPPrompt

Chapter 8. Conclusions

or other byte string embedded in the malicious code, which may re‐
veal potential infections. In response, malware authors frequently
obfuscate their malicious code to diminish the likelihood of finding a
successful IoC, while simultaneously rendering their malicious code
more difficult to comprehend, concealing its true purpose. Although
these obfuscations are often more extensive than those employed by
students to hide plagiarism (section 1.3.2), a similarity detection tool
using the syntax tree could aid in uncovering infected code fragments
by penetrating these obfuscations.

A security researcher11 contacted us about their use of Dolos to analyse
a corpus of source files from a large scale software supply‐chain attack.
The researcher investigated a coordinated attack infecting over a thou‐
sand software packages within a large package repository. Employing
Dolos, they analysed the similarity between the malicious source files
and discovered that these files could be grouped into a handful of
clusters. All malware files shared a similar function of downloading
and extracting a second‐stage malware program to further infect the
current system. However, the exact payload containing this second‐
stag malware differed per cluster, providing opportunities for further
analysis. Dolos successfully reduced the large corpus of malware to
a smaller set of clusters, substantially reducing the workload of the
security researcher.

Since this occurrence, we have no further knowledge of Dolos being
applied in similar circumstances. We do think that this avenue is
potentially underexposed and that a collaboration between the field of
similarity detection and malware analysis might yield new and exiting
insights.

8.3. Future work

While one should be mindful of feature creep, Dolos has several areas
for improvement that would greatly benefit its users.

8.3.1. Multi-file andmulti-submission analysis

Dolos currently considers each file as the sole submission of a student,
and compares that file with all other files under analysis. However,

11Upon request of the researcher, we have left out details that might identify
them, their employer, or their research.

174

8.3. Future work

this approach does not support all types of programming assignments
and may overlook potentially valuable indicators of plagiarism.

Multiple files per submission

Advanced programming courses often task students with large pro‐
jects, whose submissions comprisemultiple source files, sometimes in
different programming languages. Analysingmultiple files per submis‐
sion is currently not directly supported by Dolos. Submitting multiple
files per student will compare files of the same student with each other,
complicating the UI with many superfluous file pair comparisons and
slowing down the analysis.

While it is possible to concatenate all files belonging to a single student
submission into one source file, the resulting analysis results can be
confusing. The similarity detection pipeline can handle concatenated
files without problems, as long as they use the same programming
language. Parsers are flexible enough to construct a single syntax tree
from these files that does not differ from single‐file submissions.

A first issue with this approach is that this potentially creates matches
crossing file boundaries. When the k‐gram length is sufficiently small,
a class_end followed bymultiple import statements and a class_-
declarationmight be large enough tomatch between all transitions
across these file barriers. This artificially adds noise to the similarity
value, reducing the effectiveness of the similarity score. This can be
solved by not allowing matches to occur across file boundaries, but
does require some additional bookkeeping in the similarity detection
pipeline.

However, a bigger challenge arises when visualising a comparison
between two submission pairs. We now notice that the side‐by‐side
diff comparing two files (section 4.6.1) can become confusing because
a code fragment from one file can match with multiple other files
from the other submission. This comparison page will additionally
need to support a nested directory structure and visualise similarities
between files of both submissions. Deciding how to visualise this is a
challenging endeavour that we have not found the resources for yet.

Multiple submissions per student

Many programming platforms allow students to update and resubmit
a previous solution. Especially when the platform provides automated

This is howwe
use Dolos
currently with
larger projects.

175

Chapter 8. Conclusions

feedback on each submission, students will often hand in a large num‐
ber of submissions to test and improve upon their solution.

Dolos considers each student to have a single submission. When in‐
structors use Dolos for plagiarism detection, they often analyse the fi‐
nal submission of each student. However, previous submissions might
contain additional clues of plagiarism that are now missed. When stu‐
dents hand in the submission from another student, they often apply
their obfuscation in multiple passes, submitting between each pass to
check whether their obfuscations did not break the functionality of the
code. A student sharing their codemight also share a previous solution
or improve upon their solution after sharing it. In these situations, an
earlier pair of submissions exist with a higher similarity. Analysing all
submissions for each student would allow detecting those historical
submissions.

However, students will often hand in early versions of their solution
to receive automated feedback. These short, early versions will likely
be highly similar between students, causing high similarity values
between submissions that are not indicative of plagiarism and should
be ignored. Additionally, as each student can easily have dozens of
submissions, the resulting pairwise comparisons increase quadrat‐
ically, requiring extensive computational resources, especially if we
want to support multi‐file submissions. Trying out alternative index
structures, like a generalised suffix tree (section 7.2.3), is a first step
towards taming the resulting computational complexity of such an
analysis.

This feature would also introduce additional challenges to visualising
the results. Different submissions of a student might contain separate
clues, and bringing those to the attention of the user without confusing
them will be challenging.

However, having access to all submissions does open up avenues for
new visualisations analysing the student submission behaviour, as
some types of behaviour might be more indicative of plagiarism than
others. For example, a student making a dozen submissions with only
small changes that are incorrect, followed by a full rewrite of their
code that is suddenly correct, could be caused by that student copying
the code from another student.

8.3.2. Improving the similarity threshold estimate

The current estimation of the similarity threshold, described in sec‐
tion 4.3.2, can be unreliable or yield unexpected results. This estimate

176

8.3. Future work

is based on the assumption that the optimal threshold is located in a
local minimum of the similarity histogram. However, some reports
do not have a local minimum, or only have local minima at similarity
values that do not make sense. As this similarity threshold implicitly
creates a certain classification between possible plagiarism (above
this threshold), and possibly innocent (below this threshold), finding
a better estimation method would be beneficial.

One possible approach could be to use the clusters as indicators of
a well‐chosen similarity threshold. We currently use single‐linkage
clustering, connecting submissions if their similarity exceeds the sim‐
ilarity threshold. Evaluation methods and metrics exist to determine
whether clusters are well‐chosen (D. Xu and Tian 2015), and we could
pick the similarity threshold such that the resulting clusters are optimal
for a given clustering metric.

Another possibility, as an alternative to the similarity threshold, is us‐
ing a different clustering algorithm. Many clustering algorithms exist
that try to automatically determine an optimal clustering based on
the distance, or similarity, between data points (D. Xu and Tian 2015).
This approach requires finding or modifying an appropriate clustering
algorithm that does not cluster all data points, and can handle the
absence of any clusters at all, as we do expect the majority of submis‐
sions not to be plagiarised. It would also require easy modification by
instructors, as the clustering algorithm will likely not produce ideal
results in all situations, and we would preferably want to keep giving
instructors the flexibility to adjust the clustering.

8.3.3. Supporting instructors to report plagiarism

While Dolos offers an array of visualisations allowing instructors to
inspect the analysis results in detail, teachers still have to extract that
information and create a report when bringing a case of plagiarism in
front of a plagiarism council. This requires a lot of work and might be
one of the reasons why instructors avoid actively checking for plagiar‐
ism (Coren 2011).

Obfuscation distance

One of the most intensive tasks of inspecting a similarity detection re‐
port is comparing a suspiciouspair of sourcefiles to determinewhether
the differences are accidental or caused by intentional obfuscations
hiding plagiarism. Similar to how the edit distance between strings

177

Chapter 8. Conclusions

describes the number of changes needed to go from one string to an‐
other, an interesting avenue for further research would be to describe
the difference between two submissions in terms of an obfuscation
distance.

Difftastic12, a novel code diffing tool, uses a similar approach to com‐
pute the shortest path in terms of concrete syntax tree (CST) modifica‐
tions. By considering each modification starting from the current CST
as a weighted edge leading to the modified CST, difftastic applies the A*
algorithm to compute the shortest path between the two CSTs in the
resulting directed acyclic graph (Hart et al. 1968).

The CST modifications corresponding to the shortest path between the
two submissions is the most likely sequence of obfuscations applied
by the student. This path can be used to construct an explanation of
the modifications between similar code fragments.

Report distillation

Once an instructor has collected enough signals indicating plagiarism,
the time‐intensive task starts of collecting this evidence in a case report.
In an ideal scenario, instructors would be able to indicate these signals
in a report‐building tool, additionally tagging suspicious submissions
or file pairs. Using these tags and indicated signals, the tools can
prepare a report draft containing the necessary information.

As the information required in those reports can differ between insti‐
tutions, the functionality of building the draft report is probably best
not included in Dolos itself. However, Dolos could support tools to
build those reports by allowing to add tags to a similarity detection
report and offering an API to collect them.

8.4. Generative AI

While the aforementioned future work focuses on enhancing Dolos
within the established paradigm of source code similarity detection,
the field itself is currently grappling with a transformative shift driven
by GenAI. Despite its many flaws, this technology produces text and
other documents almost indistinguishable from those created by hu‐
mans, and it is publicly available and free of charge. Since then, the

12difftastic.wilfred.me.uk

178

https://difftastic.wilfred.me.uk

8.4. Generative AI

LLMs have improved with each iteration, as more resources are inves‐
ted in their development.

One of the tasks at which GenAI excels, and continues to improve, is
writing small code snippets to solve clearly defined tasks (M. Chen
et al. 2021; H. Yu et al. 2024). This is exactly the format of assignments
givenduring introductory programming classes, andLLMshave started
performing better on these tasks than the average student (Svetkin
2024). This makes GenAI the perfect plagiarism machine (Watters
2025), and we have observed a drastic increase of this technology s̓
adoption by students, as described in section 6.4.4.

GenAI poses a substantial risk to education, particularly in program‐
ming courses that evaluate students on their own devices using open
internet exams. Similarity detection tools require the source of the pla‐
giarism to be present in its analysed dataset, rendering plagiarism from
GenAI undetectable by these tools. This landslide shift towards plagi‐
arising from GenAI has rendered the field of educational plagiarism
detection scrambling for new technologies, as this form of plagiarism
seems virtually undetectable.

Early attempts to detect GenAI‐generated code exist, but these contain
fundamental flaws and have a high rate of false positives making them
unreliable (Pan et al. 2024). The general academic consensus seems to
be that this technology is unbannable (Prather, Leinonen et al. 2025).
Additionally, Prather, Reeves et al. (2024) observe that students strug‐
gling with learning to programmay be hindered by GenAI as it leaves
them with an illusion of competence.

However, alongside its risks, there are also opportunities presented by
this breakthrough technology. In an ironic twist of faith, source code
similarity detection tools find their application in improving LLMs,
reducing blatant plagiarism in their output. This opens up interesting
new avenues for research using source code similarity tools in this
rapidly evolving field.

GenAI is becoming increasingly proficient at tasks such as giving hints
for programming assignments (Phung et al. 2023). AI‐powered teach‐
ing assistants are emerging to help students without providing full
answers (Denny et al. 2024; Liffiton et al. 2024). This technology could
allow computer science education to scale dramatically, offering an
enhanced learning process for more students with the same number
of human teaching assistants as before.

As this technology becomes more widespread, we cannot ignore it.
It is the obligation of instructors to teach about and with GenAI: its
strengths and weaknesses, its risks and opportunities. In addition to

179

Chapter 8. Conclusions

teaching students to become expert programmers, we will also need
them to become expert code reviewers capable of critically evaluating
generated code. This is especially important as these models grow
more capable but also become more unreliable (Zhou et al. 2024).
Otherwise, if new programmers solely start outputting AI‐generated
code, we can expect a future full of poisoned slop (Shumailov et al.
2024).

8.5. Concluding remarks

This dissertation embarked on addressing significant shortcomings
in source code plagiarism detection within educational settings. The
primary outcome, the Dolos software ecosystem, has successfully met
the research goals outlined at the outset, delivering a proven, open‐
source, language‐agnostic, privacy‐focused, anduser‐friendly toolwith
powerful visualisations. As demonstrated by its adoption and diverse
applications (section 8.2), Dolos has made a tangible contribution
to the state of the art, not only in educational plagiarism detection
but also in emerging areas such as LLM output analysis. The journey
of developing Dolos has underscored the enduring need for robust
tools that support academic integrity. While the future work outlined
(section 8.3) presents exciting avenues for enhancing Dolos s̓ capabilit‐
ies, the rise of GenAI (section 8.4) undeniably reshapes the landscape.
This development does not diminish the foundational principles of
source code analysis, but rather calls for their evolution and adaptation.
The ability to understand code similarity, provenance, and original‐
ity remains paramount, perhaps more so than ever, as educators and
developers navigate this new technological frontier. Ultimately, this re‐
search provides a robust platform for similarity detection in Dolos and
contributes to the ongoing dialogue on how to foster genuine learning
and maintain academic integrity in computer science education. The
challenge of GenAI is substantial, but it also presents an opportunity
to re‐emphasise critical thinking, ethical considerations, and the de‐
velopment of deeper programming understanding—goals that tools
like Dolos can continue to support.

180

Appendix A.

Dolos CLI commands and options

This appendix lists the commands and command‐line interface (CLI)
options supported by dolos-cli. The Dolos CLI will output this in‐
formation when using the help command or -h, --help flag.

A.1. dolos command-line options

Plagiarism detection for programming exercises

Options

-v --version Output the current version.

-V, --verbose Enable verbose logging.

-h, --help Display help for this command.

Commands

run [options] <paths...> Run an analysis and show the res‐
ults.

serve [options] <path> Serve the contents of an analysis.

help [command] Display help for command.

A.2. dolos serve command-line options

Serve the contents of an analysis.

181

Appendix A. Dolos CLI commands and options

Required arguments

<path>— Path to the result of an analysis.

Options:

--no-open Do not open theweb page in your browser once it is ready.

-p --port <port> Specifies on which port the webserver should
be served.

-H --host <host> Specifies on which host the webserver should
be served.

-h, --help Display help for this command.

A.3. dolos run command-line options

Run an analysis and show the results.

Required arguments

<paths...> — Input file(s) for the analysis. Can be a list of source
code files, a CSV‐file, or a zip‐file with a top level info.csv file.

Options

-n, --name <name> Resulting name of the report. Dolos tries to
pick a sensible name if not given.

-l, --language <language> Programming language used in the
submitted files. Or char to do a character by character compar‐
ison. Detect automatically if not given.

-m, --max-fingerprint-count <integer> The -m option sets
the maximum number of times a given fingerprint may appear
before it is ignored. A code fragment that appears in many pro‐
grams is probably legitimate sharing and not the result of pla‐
giarism. With -mN any fingerprint appearing in more thanN
programs is filtered out. This option has precedence over the -M
option, which is set to 0.9 by default.

182

A.3. dolos run command‐line options

-M --max-fingerprint-percentage <fraction> The-Moption
sets how many percent of the files the fingerprint may appear
in before it is ignored. A fingerprint that appears in many pro‐
grams is probably a legitimate fingerprint and not the result of
plagiarism. With -MN any fingerprint appearing in more than
N percent of the files is filtered out. Must be a value between
0 and 1. This option is ignored when comparing only two files,
because each match appear in 100% of the files

-i, --ignore <path> Path of a filewith template/boilerplate code.
Code fragments matching with this file will be ignored.

-L, --limit-results <integer> Specifies howmanymatching
file pairs are shown in the result. All pairs are shown when this
option is omitted.

-s, --min-fragment-length <integer> Theminimumamount
of kgrams a fragment should contain. Every fragment with less
kgrams then the specified amount is filtered out. (default: 0)

-c --compare Print a comparison of the matching fragments even
if analysing more than two files. Only valid when the output is
set to terminal or console.

-S, --min-similarity <fraction> Theminimumsimilarity between
two files. Must be a value between 0 and 1

-f, --output-format <format> Specifies what format the out‐
put should be in, current options are: terminal/console, csv,
html/web. (default: terminal)

-p, --port <port> Specifies on which port the webserver should
be served.

-H, --host <host> Specifies onwhichhost--output-format=web
should be served.

-o, --output-destination <path> Pathwhere towrite the out‐
put report to. This has no effect when the output format is set to
terminal.

--no-open Do not open theweb page in your browser once it is ready.

--sort-by <field> Which field to sort the pairs by. Options are:
similarity, total overlap, and longest fragment (de‐
fault: total overlap)

183

Appendix A. Dolos CLI commands and options

-b, --fragment-sort-by <sort> How to sort the fragments by
the amount of matches, only applicable in terminal compar‐
ison output. The options are: kgrams ascending, kgrams
descending and file order (default: file order)

-k, --kgram-length <integer> The length of each kgram frag‐
ment. (default: 23)

-w, --kgrams-in-window <integer> The size of thewindow that
will be used (in kgrams). (default: 17)

-C, --include-comments Include the comments during the token‐
ization process.

-h, --help Display help for this command.

184

Bibliography
Abad, J., K. Donhauser, F. Pinto and F. Yang (Dec. 2024). Copyright‐Protected Language

Generation via Adaptive Model Fusion. doi: 10.48550/arXiv.2412.06619. arXiv:
2412.06619 [cs].

Acampora, G. and G. Cosma (Aug. 2015). “A Fuzzy‐based Approach to Programming
Language Independent Source‐Code Plagiarism Detection”. In: 2015 IEEE Interna‐
tional Conference on Fuzzy Systems (FUZZ‐IEEE), pp. 1–8. doi: 10.1109/FUZZ-IEEE.
2015.7337935.

Aho, A., M. Lam, R. Sethi and J. Ullman (Aug. 2006). Compilers: Principles, Techniques,
and Tools. 2nd edition. Boston: AddisonWesley. isbn: 978‐0‐321‐48681‐3.

Ahtiainen, A., S. Surakka and M. Rahikainen (2006). “Plaggie: GNU‐licensed Source
Code Plagiarism Detection Engine for Java Exercises”. In: Proceedings of the 6th Baltic
Sea Conference on Computing Education Research Koli Calling 2006 ‐ Baltic Sea ’06.
Uppsala, Sweden: ACM Press, p. 141. doi: 10.1145/1315803.1315831.

Alam, L. S. (2004). “Is PlagiarismMore Prevalent in Some Forms of Assessment than
Others?” In: Beyond the Comfort Zone: Proceedings of the 21st ASCILITE Conference.
Perth, Australia, pp. 48–57. isbn: 0‐9751702‐4‐4.

Albluwi, I. (Dec. 2019). “Plagiarism in ProgrammingAssessments: A Systematic Review”.
In:ACMTransactions on Computing Education 20.1, 6:1–6:28. doi: 10.1145/3371156.

Alexandron, G., J. A. Ruipérez‐Valiente, Z. Chen, P. J. Muñoz‐Merino and D. E. Pritchard
(May 2017). “Copying@Scale: Using Harvesting Accounts for Collecting Correct An‐
swers in a MOOC”. In: Computers & Education 108, pp. 96–114. issn: 0360‐1315. doi:
10.1016/j.compedu.2017.01.015.

Arwin, C. and S. M. M. Tahaghoghi (Jan. 2006). “Plagiarism Detection across Program‐
ming Languages”. In: Proceedings of the 29th Australasian Computer Science Conference.
Vol. 48. ACSC ʼ06. AUS: Australian Computer Society, Inc., pp. 277–286. isbn: 978‐1‐
920682‐30‐9.

Bogomolov, E., V. Kovalenko, Y. Rebryk, A. Bacchelli and T. Bryksin (June 2021). Au‐
thorship Attribution of Source Code: A Language‐Agnostic Approach and Applicability
in Software Engineering. doi: 10.48550/arXiv.2001.11593. arXiv: 2001.11593
[cs].

Bostock, M., V. Ogievetsky and J. Heer (Dec. 2011). “D3 Data‐Driven Documents”. In:
IEEE Transactions on Visualization and Computer Graphics 17.12, pp. 2301–2309. issn:
1941‐0506. doi: 10.1109/TVCG.2011.185.

Brimble, M. and P. Stevenson‐Clarke (Dec. 2005). “Perceptions of the Prevalence and
Seriousness of Academic Dishonesty in Australian Universities”. In: The Australian
Educational Researcher 32.3, pp. 19–44. issn: 2210‐5328. doi: 10.1007/BF03216825.

Brin, S., J. Davis and H. García‐Molina (May 1995). “Copy Detection Mechanisms for
Digital Documents”. In: Proceedings of the 1995 ACM SIGMOD International Conference

185

https://doi.org/10.48550/arXiv.2412.06619
https://arxiv.org/abs/2412.06619
https://doi.org/10.1109/FUZZ-IEEE.2015.7337935
https://doi.org/10.1109/FUZZ-IEEE.2015.7337935
https://doi.org/10.1145/1315803.1315831
https://doi.org/10.1145/3371156
https://doi.org/10.1016/j.compedu.2017.01.015
https://doi.org/10.48550/arXiv.2001.11593
https://arxiv.org/abs/2001.11593
https://arxiv.org/abs/2001.11593
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1007/BF03216825

Bibliography

on Management of Data. SIGMOD ʼ95. New York, NY, USA: Association for Computing
Machinery, pp. 398–409. isbn: 978‐0‐89791‐731‐5. doi: 10.1145/223784.223855.

Brunsfeld, M. et al. (Jan. 2024). Tree‐Sitter/Tree‐Sitter: V0.20.9. Zenodo. doi: 10.5281/
ZENODO.4619183.

Bultynck, R. (2023). “Seth: Simulatie van Plagiaatobfuscatie Door Studenten in Bron‐
code.” MA thesis. Ghent University.

Bulut, N. and M. H. Halstead (June 1973). “Invariant Properties of Algorithms”. In:
SIGPLAN Not. 8.6, pp. 12–13. issn: 0362‐1340. doi: 10.1145/986953.986959.

Carlini, N., D. Ippolito, M. Jagielski, K. Lee, F. Tramer and C. Zhang (Mar. 2023). Quan‐
tifying Memorization Across Neural Language Models. doi: 10.48550/arXiv.2202.
07646. arXiv: 2202.07646 [cs].

Chae, D.‐K., J. Ha, S.‐W. Kim, B. Kang and E. G. Im (Oct. 2013). “Software Plagiarism
Detection: A Graph‐Based Approach”. In: Proceedings of the 22nd ACM International
Conference on Information & Knowledge Management. CIKM ʼ13. New York, NY, USA:
Association for Computing Machinery, pp. 1577–1580. isbn: 978‐1‐4503‐2263‐8. doi:
10.1145/2505515.2507848.

Chan, J. S., N. Chowdhury, O. Jaffe, J. Aung, D. Sherburn, E. Mays, G. Starace, K. Liu,
L. Maksin, T. Patwardhan, L. Weng and A. Mądry (Feb. 2025). MLE‐bench: Evaluating
Machine Learning Agents on Machine Learning Engineering. doi: 10.48550/arXiv.
2410.07095. arXiv: 2410.07095 [cs].

Cheers, H., Y. Lin and S. P. Smith (Oct. 2019). “ANovel Approach for Detecting Logic Sim‐
ilarity in Plagiarised Source Code”. In: 2019 IEEE 10th International Conference on Soft‐
ware Engineering and Service Science (ICSESS), pp. 1–6. doi: 10.1109/ICSESS47205.
2019.9040752.

Cheers, H., Y. Lin and S. P. Smith (2021). “Academic Source Code Plagiarism Detection
by Measuring Program Behavioral Similarity”. In: IEEE Access 9, pp. 50391–50412.
issn: 2169‐3536. doi: 10.1109/ACCESS.2021.3069367.

Chen, B., C. M. Lewis, M. West and C. Zilles (July 2024). “Plagiarism in the Age of
Generative AI: Cheating Method Change and Learning Loss in an Intro to CS Course”.
In: Proceedings of the Eleventh ACM Conference on Learning @ Scale. Atlanta GA USA:
ACM, pp. 75–85. isbn: 979‐8‐4007‐0633‐2. doi: 10.1145/3657604.3662046.

Chen, G., Y. Zhang and X.Wang (Sept. 2011). “Analysis on Identification Technologies of
Program Code Similarity”. In: 2011 International Conference of Information Technology,
Computer Engineering and Management Sciences. Vol. 1, pp. 188–191. doi: 10.1109/
ICM.2011.240.

Chen, M. et al. (July 2021). Evaluating Large Language Models Trained on Code. doi:
10.48550/arXiv.2107.03374. arXiv: 2107.03374 [cs].

Chomsky, N. and M. P. Schützenberger (Jan. 1959). “The Algebraic Theory of Context‐
Free Languages*”. In: Studies in Logic and the Foundations of Mathematics. Ed. by P.
Braffort and D. Hirschberg. Vol. 26. Computer Programming and Formal Systems.
Elsevier, pp. 118–161. doi: 10.1016/S0049-237X(09)70104-1.

Chuda, D., P. Navrat, B. Kovacova and P. Humay (Feb. 2012). “The Issue of (Software)
Plagiarism: A Student View”. In: IEEE Transactions on Education 55.1, pp. 22–28. issn:
1557‐9638. doi: 10.1109/TE.2011.2112768.

Clarke, R. and T. Lancaster (June 2006). “Eliminating the Successor to Plagiarism?
Identifying the Usage of Contract Cheating Sites.” In: Proceedings Of 2nd Plagiarism:
Prevention, Practice and Policy Conference 2006. Newcastle, UK.

186

https://doi.org/10.1145/223784.223855
https://doi.org/10.5281/ZENODO.4619183
https://doi.org/10.5281/ZENODO.4619183
https://doi.org/10.1145/986953.986959
https://doi.org/10.48550/arXiv.2202.07646
https://doi.org/10.48550/arXiv.2202.07646
https://arxiv.org/abs/2202.07646
https://doi.org/10.1145/2505515.2507848
https://doi.org/10.48550/arXiv.2410.07095
https://doi.org/10.48550/arXiv.2410.07095
https://arxiv.org/abs/2410.07095
https://doi.org/10.1109/ICSESS47205.2019.9040752
https://doi.org/10.1109/ICSESS47205.2019.9040752
https://doi.org/10.1109/ACCESS.2021.3069367
https://doi.org/10.1145/3657604.3662046
https://doi.org/10.1109/ICM.2011.240
https://doi.org/10.1109/ICM.2011.240
https://doi.org/10.48550/arXiv.2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1016/S0049-237X(09)70104-1
https://doi.org/10.1109/TE.2011.2112768

Clarke, R. and T. Lancaster (July 2013). “Commercial Aspects of Contract Cheating”. In:
Proceedings of the 18thACMConference on Innovation and Technology in Computer Science
Education. ITiCSE ʼ13. New York, NY, USA: Association for Computing Machinery,
pp. 219–224. isbn: 978‐1‐4503‐2078‐8. doi: 10.1145/2462476.2462497.

Cohen, J. (Apr. 1960). “A Coefficient of Agreement for Nominal Scales”. In: Educa‐
tional and Psychological Measurement 20.1, pp. 37–46. issn: 0013‐1644. doi: 10.1177/
001316446002000104.

Collberg, C. and S. Kobourov (Apr. 2005). “Self‐Plagiarism in Computer Science”. In:
Communications of the ACM 48.4, pp. 88–94. issn: 0001‐0782. doi: 10.1145/1053291.
1053293.

Cook, S. A. (May 1971). “The Complexity of Theorem‐Proving Procedures”. In: Proceed‐
ings of the Third Annual ACM Symposium on Theory of Computing. STOC ʼ71. New York,
NY, USA: Association for ComputingMachinery, pp. 151–158. isbn: 978‐1‐4503‐7464‐4.
doi: 10.1145/800157.805047.

Coren, A. (Dec. 2011). “Turning a Blind Eye: FacultyWho Ignore Student Cheating”. In:
Journal of Academic Ethics 9.4, pp. 291–305. issn: 1572‐8544. doi: 10.1007/s10805-
011-9147-y.

Cosma, G. and M. Joy (May 2008). “Towards a Definition of Source‐Code Plagiarism”.
In: IEEE Transactions on Education 51.2, pp. 195–200. issn: 1557‐9638. doi: 10.1109/
TE.2007.906776.

Cosma, G. and M. Joy (Mar. 2012). “An Approach to Source‐Code Plagiarism Detection
and InvestigationUsing Latent Semantic Analysis”. In: IEEE Transactions on Computers
61.3, pp. 379–394. issn: 0018‐9340. doi: 10.1109/TC.2011.223.

Cressey,D. R. (1953).Other People’sMoney; a Study in the Social Psychology of Embezzlement.
Wadsworth Publishing Company, Belmont, California. isbn: 978‐0‐534‐00142‐1.

Culwin, F., A. MacLeod and T. Lancaster (2001). “Source Code Plagiarism in UK HE
Computing Schools”. In: Proceedings of the 2nd Annual LTSN‐ICS Conference. London,
United Kingdom: LTSN Centre for Information and Computer Sciences, pp. 1–7.

DʼSouza, D., M. Hamilton and M. C. Harris (Jan. 2007). “Software Development Market‐
places: Implications for Plagiarism”. In: Proceedings of the Ninth Australasian Confer‐
ence on Computing Education ‐ Volume 66. Vol. 66. ACE ʼ07. AUS: Australian Computer
Society, Inc., pp. 27–33. isbn: 978‐1‐920682‐46‐0.

Dekoninck, J., M. N. Müller and M. Vechev (May 2024). ConStat: Performance‐Based
Contamination Detection in Large Language Models. doi: 10.48550/arXiv.2405.
16281. arXiv: 2405.16281 [cs].

Denny, P., J. Leinonen, J. Prather, A. Luxton‐Reilly, T. Amarouche, B. A. Becker and B. N.
Reeves (Mar. 2024). “Prompt Problems: A New Programming Exercise for the Gener‐
ative AI Era”. In: Proceedings of the 55th ACM Technical Symposium on Computer Science
Education V. 1. SIGCSE 2024. New York, NY, USA: Association for Computing Ma‐
chinery, pp. 296–302. isbn: 979‐8‐4007‐0423‐9. doi: 10.1145/3626252.3630909.

Devore‐McDonald, B. and E. D. Berger (Nov. 2020). “Mossad: Defeating Software Plagi‐
arism Detection”. In: Proceedings of the ACM on Programming Languages 4.OOPSLA,
pp. 1–28. issn: 2475‐1421. doi: 10.1145/3428206.

Dick, M., J. Sheard, C. Bareiss, J. Carter, D. Joyce, T. Harding and C. Laxer (June
2002). “Addressing Student Cheating: Definitions and Solutions”. In: SIGCSE Bull.
35.2, pp. 172–184. issn: 0097‐8418. doi: 10.1145/782941.783000.

187

https://doi.org/10.1145/2462476.2462497
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1145/1053291.1053293
https://doi.org/10.1145/1053291.1053293
https://doi.org/10.1145/800157.805047
https://doi.org/10.1007/s10805-011-9147-y
https://doi.org/10.1007/s10805-011-9147-y
https://doi.org/10.1109/TE.2007.906776
https://doi.org/10.1109/TE.2007.906776
https://doi.org/10.1109/TC.2011.223
https://doi.org/10.48550/arXiv.2405.16281
https://doi.org/10.48550/arXiv.2405.16281
https://arxiv.org/abs/2405.16281
https://doi.org/10.1145/3626252.3630909
https://doi.org/10.1145/3428206
https://doi.org/10.1145/782941.783000

Bibliography

Dinitz, Y., A. Itai and M. Rodeh (May 1999). “On an Algorithm of Zemlyachenko for
Subtree Isomorphism”. In: Information Processing Letters 70.3, pp. 141–146. issn: 0020‐
0190. doi: 10.1016/S0020-0190(99)00054-X.

EuropeanCommission (Jan. 2021).Q&A:COVID‐19Vaccination in the EU. https://ec.europa.eu/com‐
mission/presscorner/detail/en/qanda_20_2467. Press Release.

Faidhi, J. A.W. and S. K. Robinson (Jan. 1987). “An Empirical Approach for Detecting
Program Similarity and Plagiarism within a University Programming Environment”.
In: Computers & Education 11.1, pp. 11–19. issn: 0360‐1315. doi: 10.1016/0360-
1315(87)90042-X.

Flores, E., P. Rosso, L. Moreno and E. Villatoro‐Tello (Dec. 2014). “On the Detection of
SOurce COde Re‐use”. In: Proceedings of the Forum for Information Retrieval Evaluation.
FIRE ʼ14. New York, NY, USA: Association for Computing Machinery, pp. 21–30. isbn:
978‐1‐4503‐3755‐7. doi: 10.1145/2824864.2824878.

Gehringer, E. (Oct. 2004). “Reuse of Homework and Test Questions:When,Why, and
How to Maintain Security?” In: 34th Annual Frontiers in Education, 2004. FIE 2004.
S1F/24–S1F/29 Vol. 3. doi: 10.1109/FIE.2004.1408702.

Geldhof, M. (2022). “Dolos: Gebruiksvriendelijke En Toegankelijke Plagiaatdetectie
Voor Dodona”. MA thesis. Ghent University.

Gibson, J. P. (July 2009). “Software Reuse and Plagiarism: A Code of Practice”. In: SIGCSE
Bull. 41.3, pp. 55–59. issn: 0097‐8418. doi: 10.1145/1595496.1562900.

GitHub (Oct. 2024). Octoverse: AI Leads Python to Top Language as the Number of Global
Developers Surges. https://github.blog/news‐insights/octoverse/octoverse‐2024/.

Gusfield, D. (May 1997). Algorithms on Strings, Trees, and Sequences: Computer Science
and Computational Biology. 1st edition. Cambridge England ; New York: Cambridge
University Press. isbn: 978‐0‐521‐58519‐4.

Hart, P. E., N. J. Nilsson and B. Raphael (July 1968). “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths”. In: IEEE Transactions on Systems Science and
Cybernetics 4.2, pp. 100–107. issn: 2168‐2887. doi: 10.1109/TSSC.1968.300136.

Hellas, A., J. Leinonen and P. Ihantola (June 2017). “Plagiarism in Take‐home Exams:
Help‐seeking, Collaboration, and Systematic Cheating”. In: Proceedings of the 2017
ACM Conference on Innovation and Technology in Computer Science Education. ITiCSE
ʼ17. New York, NY, USA: Association for Computing Machinery, pp. 238–243. isbn:
978‐1‐4503‐4704‐4. doi: 10.1145/3059009.3059065.

Husain, F. M., G. K. S. Al‐Shaibani and O. H. A. Mahfoodh (June 2017). “Perceptions of
and Attitudes toward Plagiarism and Factors Contributing to Plagiarism: A Review
of Studies”. In: Journal of Academic Ethics 15.2, pp. 167–195. issn: 1572‐8544. doi:
10.1007/s10805-017-9274-1.

Jaccard, P. (1901). “Étude Comparative de La Distribution Florale Dans Une Portion
Des Alpes et Du Jura”. In: Bulletin de la Société Vaudoise des Sciences Naturelles 37.142,
p. 547. issn: 0037‐9603. doi: 10.5169/seals-266450.

Jacobs, A. C. (2022). “Erato En Apate: Similariteitsanalyse Met Deelboomisomorfie En
Een Kwalitatieve Benchmark Voor Plagiaatdetectie Op Broncode”. MA thesis. Ghent
University.

Jones, K. O., J. Reid and R. Bartlett (Dec. 2008). “Cyber Cheating in an Information
Technology Age”. In: Digithum 10. issn: 1575‐2275.

188

https://doi.org/10.1016/S0020-0190(99)00054-X
https://doi.org/10.1016/0360-1315(87)90042-X
https://doi.org/10.1016/0360-1315(87)90042-X
https://doi.org/10.1145/2824864.2824878
https://doi.org/10.1109/FIE.2004.1408702
https://doi.org/10.1145/1595496.1562900
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1145/3059009.3059065
https://doi.org/10.1007/s10805-017-9274-1
https://doi.org/10.5169/seals-266450

Joy, M. and M. Luck (May 1999). “Plagiarism in Programming Assignments”. In: IEEE
Transactions on Education 42.2, pp. 129–133. issn: 1557‐9638. doi: 10.1109/13.
762946.

Joy, M., G. Cosma, J. Y.‐K. Yau and J. Sinclair (Feb. 2011). “Source Code Plagiarism—
A Student Perspective”. In: IEEE Transactions on Education 54.1, pp. 125–132. issn:
1557‐9638. doi: 10.1109/TE.2010.2046664.

Karavirta, V., P. Ihantola and T. Koskinen (July 2013). “Service‐Oriented Approach to
Improve Interoperability of E‐Learning Systems”. In: 2013 IEEE 13th International
Conference on Advanced Learning Technologies, pp. 341–345. doi: 10.1109/ICALT.
2013.105.

Karp, R. M. and M. O. Rabin (Mar. 1987). “Efficient Randomized Pattern‐Matching
Algorithms”. In: IBM Journal of Research and Development 31.2, pp. 249–260. issn:
0018‐8646. doi: 10.1147/rd.312.0249.

Kumar, A. N., R. K. Raj, S. G. Aly, M. D. Anderson, B. A. Becker, R. L. Blumenthal, E.
Eaton, S. L. Epstein, M. Goldweber, P. Jalote, D. Lea,M. Oudshoorn,M. Pias, S. Reiser,
C. Servin, R. Simha, T.Winters and Q. Xiang (2024). Computer Science Curricula 2023.
New York, NY, USA: Association for Computing Machinery. isbn: 979‐8‐4007‐1033‐9.

Kyrilov, A. and D. C. Noelle (Nov. 2015). “Binary Instant Feedback on Programming
Exercises Can Reduce Student Engagement and Promote Cheating”. In: Proceedings
of the 15th Koli Calling Conference on Computing Education Research. Koli Calling ʼ15.
New York, NY, USA: Association for Computing Machinery, pp. 122–126. isbn: 978‐1‐
4503‐4020‐5. doi: 10.1145/2828959.2828968.

Kyrilov, A. and D. C. Noelle (Apr. 2016). “Do Students Need Detailed Feedback on
Programming Exercises and Can Automated Assessment Systems Provide It?” In: J.
Comput. Sci. Coll. 31.4, pp. 115–121. issn: 1937‐4771.

Lachaert, M. (2025). “Optimaliseren van Dolos Met Behulp van Suffixbomen Voor
Plagiaatdetectie in Code”. MA thesis. Ghent University.

Lancaster, T. and F. Culwin (June 2004). “A Comparison of Source Code Plagiarism
Detection Engines”. In: Computer Science Education 14.2, pp. 101–112. issn: 0899‐3408,
1744‐5175. doi: 10.1080/08993400412331363843.

Laugwitz, B., T. Held and M. Schrepp (2008). “Construction and Evaluation of a User
Experience Questionnaire”. In: HCI and Usability for Education and Work. Ed. by
A. Holzinger. Berlin, Heidelberg: Springer, pp. 63–76. isbn: 978‐3‐540‐89350‐9. doi:
10.1007/978-3-540-89350-9_6.

Li, X. and X. J. Zhong (Oct. 2010). “The Source Code Plagiarism Detection Using AST”.
In: 2010 International Symposium on Intelligence Information Processing and Trusted
Computing, pp. 406–408. doi: 10.1109/IPTC.2010.90.

Liffiton, M., B. E. Sheese, J. Savelka and P. Denny (Feb. 2024). “CodeHelp: Using Large
Language Models with Guardrails for Scalable Support in Programming Classes”. In:
Proceedings of the 23rd Koli Calling International Conference on Computing Education
Research. Koli Calling ʼ23. New York, NY, USA: Association for Computing Machinery,
pp. 1–11. isbn: 979‐8‐4007‐1653‐9. doi: 10.1145/3631802.3631830.

Liu, C., C. Chen, J. Han and P. S. Yu (Aug. 2006). “GPLAG: Detection of Software Plagiar‐
ism by ProgramDependence Graph Analysis”. In: Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. KDD ʼ06. New York,
NY, USA: Association for ComputingMachinery, pp. 872–881. isbn: 978‐1‐59593‐339‐3.
doi: 10.1145/1150402.1150522.

189

https://doi.org/10.1109/13.762946
https://doi.org/10.1109/13.762946
https://doi.org/10.1109/TE.2010.2046664
https://doi.org/10.1109/ICALT.2013.105
https://doi.org/10.1109/ICALT.2013.105
https://doi.org/10.1147/rd.312.0249
https://doi.org/10.1145/2828959.2828968
https://doi.org/10.1080/08993400412331363843
https://doi.org/10.1007/978-3-540-89350-9_6
https://doi.org/10.1109/IPTC.2010.90
https://doi.org/10.1145/3631802.3631830
https://doi.org/10.1145/1150402.1150522

Bibliography

LoSchiavo, F. M. and M. A. Shatz (2011). “The Impact of an Honor Code on Cheating in
Online Courses”. In: Journal of Online Learning and Teaching 7.2, p. 6.

Luce, R. D. and H. Raiffa (1957). Games and Decisions: Introduction and Critical Survey.
New York: JohnWiley & Sons, Inc. isbn: 978‐0‐486‐13483‐3.

Luo, J. (May 2025). “How Does GenAI Affect Trust in Teacher‐Student Relationships?
Insights from Studentsʼ Assessment Experiences”. In: Teaching in Higher Education
30.4, pp. 991–1006. issn: 1356‐2517. doi: 10.1080/13562517.2024.2341005.

Lupton, R. A., K. J. Chapman and J. E. Weiss (Mar. 2000). “International Perspective: A
Cross‐National Exploration of Business Studentsʼ Attitudes, Perceptions, and Tenden‐
cies Toward Academic Dishonesty”. In: Journal of Education for Business 75.4, pp. 231–
235. issn: 0883‐2323. doi: 10.1080/08832320009599020.

Luxton‐Reilly, A. and A. Petersen (Jan. 2017). “The Compound Nature of Novice Pro‐
gramming Assessments”. In: Proceedings of the Nineteenth Australasian Computing
Education Conference. ACE ʼ17. New York, NY, USA: Association for Computing Ma‐
chinery, pp. 26–35. isbn: 978‐1‐4503‐4823‐2. doi: 10.1145/3013499.3013500.

Maertens, R., P. Dawyndt and B. Mesuere (June 2023). “Dolos 2.0: Towards Seamless
Source Code Plagiarism Detection in Online Learning Environments”. In: Proceedings
of the 2023 Conference on Innovation and Technology in Computer Science Education V. 2.
ITiCSE 2023. New York, NY, USA: Association for Computing Machinery, p. 632. isbn:
979‐8‐4007‐0139‐9. doi: 10.1145/3587103.3594166.

Maertens, R., P. Dawyndt and B. Mesuere (June 2025). “Source Code Plagiarism Detec‐
tion as a Service with Dolos”. In: Proceedings of the 30th ACM Conference on Innovation
and Technology in Computer Science Education V. 2. ITiCSE 2025. New York, NY, USA:
Association for Computing Machinery, pp. 729–730. isbn: 979‐8‐4007‐1569‐3. doi:
10.1145/3724389.3731274.

Maertens, R., M. Van Neyghem, M. Geldhof, C. Van Petegem, N. Strijbol, P. Dawyndt
and B. Mesuere (May 2024). “Discovering and Exploring Cases of Educational Source
Code Plagiarism with Dolos”. In: SoftwareX 26, p. 101755. issn: 2352‐7110. doi: 10.
1016/j.softx.2024.101755.

Maertens, R., C. Van Petegem, N. Strijbol, T. Baeyens, A. C. Jacobs, P. Dawyndt and
B. Mesuere (Mar. 2022). “Dolos: Language‐agnostic Plagiarism Detection in Source
Code”. In: Journal of Computer Assisted Learning 38.4, pp. 1046–1061. issn: 1365‐2729.
doi: 10.1111/jcal.12662.

Maertens, R., C. Van Petegem, N. Strijbol, T. Baeyens, M. Van Neyghem, M. Geldhof,
A. C. Jacobs, P. Dawyndt and B. Mesuere (Oct. 2024). Dolos. Zenodo. doi: 10.5281/
zenodo.7966722.

McCabe, D. L., L. K. Trevino and K. D. Butterfield (1999). “Academic Integrity in Honor
Code andNon‐HonorCodeEnvironments: AQualitative Investigation”. In:The Journal
of Higher Education 70.2, pp. 211–234. issn: 0022‐1546. doi: 10.2307/2649128.
JSTOR: 2649128.

McCabe, D. L., L. K. Trevino and K. D. Butterfield (July 2001). “Cheating in Academic
Institutions: A Decade of Research”. In: Ethics & Behavior 11.3, pp. 219–232. issn:
1050‐8422, 1532‐7019. doi: 10.1207/S15327019EB1103_2.

McCabe, D. L., L. K. Treviño and K. D. Butterfield (June 2002). “Honor Codes and
Other Contextual Influences on Academic Integrity: A Replication and Extension to
Modified Honor Code Settings”. In: Research in Higher Education 43.3, pp. 357–378.
issn: 1573‐188X. doi: 10.1023/A:1014893102151.

190

https://doi.org/10.1080/13562517.2024.2341005
https://doi.org/10.1080/08832320009599020
https://doi.org/10.1145/3013499.3013500
https://doi.org/10.1145/3587103.3594166
https://doi.org/10.1145/3724389.3731274
https://doi.org/10.1016/j.softx.2024.101755
https://doi.org/10.1016/j.softx.2024.101755
https://doi.org/10.1111/jcal.12662
https://doi.org/10.5281/zenodo.7966722
https://doi.org/10.5281/zenodo.7966722
https://doi.org/10.2307/2649128
http://www.jstor.org/stable/2649128
https://doi.org/10.1207/S15327019EB1103_2
https://doi.org/10.1023/A:1014893102151

McGrath, J. (May 2024). An ’artificial Sun’ Achieved a Record‐Breaking Fusion Experiment,
Bringing Us Closer to Clean, Limitless Energy. https://www.businessinsider.com/west‐
tungsten‐tokamak‐fusion‐record‐plasma‐2024‐5.

Misc, M., Z. Sustran and J. Protic (2016). “A Comparison of Software Tools for Plagiarism
Detection in Programming Assignments”. In: The International journal of engineering
education 32.2, pp. 738–748. issn: 0949‐149X.

Nguyen, P. T., J. Di Rocco, C. Di Sipio, R. Rubei, D. Di Ruscio and M. Di Penta (Aug.
2024). “GPTSniffer: A CodeBERT‐based Classifier to Detect Source CodeWritten by
ChatGPT”. In: Journal of Systems and Software 214, p. 112059. issn: 0164‐1212. doi:
10.1016/j.jss.2024.112059.

Novak, M., M. Joy and D. Kermek (June 2019). “Source‐Code Similarity Detection and
Detection Tools Used in Academia: A Systematic Review”. In: ACM Transactions on
Computing Education 19.3, pp. 1–37. issn: 1946‐6226. doi: 10.1145/3313290.

Ohm, M., H. Plate, A. Sykosch and M. Meier (2020). “Backstabber s̓ Knife Collection: A
Review of Open Source Software Supply Chain Attacks”. In:Detection of Intrusions and
Malware, and Vulnerability Assessment. Ed. by C.Maurice, L. Bilge, G. Stringhini and N.
Neves. Cham: Springer International Publishing, pp. 23–43. isbn: 978‐3‐030‐52683‐2.
doi: 10.1007/978-3-030-52683-2_2.

OpenAI (Mar. 2024). Video Generation Models as World Simulators. https://openai.com/in‐
dex/video‐generation‐models‐as‐world‐simulators/.

Ottenstein, K. J. (Dec. 1976). “An Algorithmic Approach to the Detection and Prevention
of Plagiarism”. In:ACMSIGCSE Bulletin 8.4, pp. 30–41. issn: 0097‐8418. doi: 10.1145/
382222.382462.

Pan,W. H., M. J. Chok, J. L. S. Wong, Y. X. Shin, Y. S. Poon, Z. Yang, C. Y. Chong, D. Lo
and M. K. Lim (May 2024). “Assessing AI Detectors in Identifying AI‐Generated Code:
Implications for Education”. In: Proceedings of the 46th International Conference on
Software Engineering: Software Engineering Education and Training. ICSE‐SEET ʼ24. New
York, NY, USA: Association for Computing Machinery, pp. 1–11. isbn: 979‐8‐4007‐
0498‐7. doi: 10.1145/3639474.3640068.

Perkins, D. and F. Martin (Oct. 1985). Fragile Knowledge and Neglected Strategies in Novice
Programmers. IR85‐22. Tech. rep.

Phung, T., V.‐A. Pădurean, J. Cambronero, S. Gulwani, T. Kohn, R. Majumdar, A. Singla
and G. Soares (Sept. 2023). “Generative AI for Programming Education: Benchmark‐
ing ChatGPT, GPT‐4, and Human Tutors”. In: Proceedings of the 2023 ACM Conference
on International Computing Education Research ‐ Volume 2. Vol. 2. ICER ʼ23. New York,
NY, USA: Association for Computing Machinery, pp. 41–42. isbn: 978‐1‐4503‐9975‐3.
doi: 10.1145/3568812.3603476.

Prather, J., P. Denny, J. Leinonen, B. A. Becker, I. Albluwi, M. Craig, H. Keuning, N.
Kiesler, T. Kohn, A. Luxton‐Reilly, S.MacNeil, A. Petersen, R. Pettit, B. N. Reeves and J.
Savelka (Dec. 2023). “TheRobotsAreHere:Navigating theGenerativeAIRevolution in
Computing Education”. In: Proceedings of the 2023Working Group Reports on Innovation
and Technology in Computer Science Education. ITiCSE‐WGR ʼ23. New York, NY, USA:
Association for Computing Machinery, pp. 108–159. isbn: 979‐8‐4007‐0405‐5. doi:
10.1145/3623762.3633499.

Prather, J., J. Leinonen, N. Kiesler, J. Gorson Benario, S. Lau, S. MacNeil, N. Norouzi,
S. Opel, V. Pettit, L. Porter, B. N. Reeves, J. Savelka, D. H. Smith, S. Strickroth and D.
Zingaro (Jan. 2025). “Beyond the Hype: A Comprehensive Review of Current Trends

191

https://doi.org/10.1016/j.jss.2024.112059
https://doi.org/10.1145/3313290
https://doi.org/10.1007/978-3-030-52683-2_2
https://doi.org/10.1145/382222.382462
https://doi.org/10.1145/382222.382462
https://doi.org/10.1145/3639474.3640068
https://doi.org/10.1145/3568812.3603476
https://doi.org/10.1145/3623762.3633499

Bibliography

in Generative AI Research, Teaching Practices, and Tools”. In: 2024 Working Group
Reports on Innovation and Technology in Computer Science Education. ITiCSE 2024. New
York, NY, USA: Association for Computing Machinery, pp. 300–338. isbn: 979‐8‐4007‐
1208‐1. doi: 10.1145/3689187.3709614.

Prather, J., B. N. Reeves, J. Leinonen, S. MacNeil, A. S. Randrianasolo, B. A. Becker,
B. Kimmel, J. Wright and B. Briggs (Aug. 2024). “TheWidening Gap: The Benefits
and Harms of Generative AI for Novice Programmers”. In: Proceedings of the 2024
ACM Conference on International Computing Education Research ‐ Volume 1. Vol. 1. ICER
ʼ24. New York, NY, USA: Association for Computing Machinery, pp. 469–486. isbn:
979‐8‐4007‐0475‐8. doi: 10.1145/3632620.3671116.

Prechelt, L., G. Malpohl and M. Philippsen (Nov. 2002). “Finding Plagiarisms among a
Set of Programs with JPlag”. In: Journal of Universal Computer Science 8.11, pp. 1016–
1038. doi: 10.3217/jucs-008-11-1016.

Prince, M. (2004). “Does Active LearningWork? A Review of the Research”. In: Journal
of Engineering Education 93.3, pp. 223–231. issn: 2168‐9830. doi: 10.1002/j.2168-
9830.2004.tb00809.x.

Riddell,M., A.Ni andA.Cohan (Mar. 2024).Quantifying Contamination in Evaluating Code
Generation Capabilities of Language Models. doi: 10.48550/arXiv.2403.04811.
arXiv: 2403.04811 [cs].

Roberts, E. (Nov. 2002). “Strategies for Promoting Academic Integrity in CS Courses”.
In: 32nd Annual Frontiers in Education. Vol. 2, F3G–F3G. doi: 10.1109/FIE.2002.
1158209.

Robins, A. (Mar. 2010). “Learning Edge Momentum: A New Account of Outcomes in
CS1”. In: Computer Science Education 20.1, pp. 37–71. issn: 0899‐3408. doi: 10.1080/
08993401003612167.

Robins, A., J. Rountree and N. Rountree (June 2003). “Learning and Teaching Program‐
ming: A Review and Discussion”. In: Computer Science Education 13.2, pp. 137–172.
issn: 0899‐3408. doi: 10.1076/csed.13.2.137.14200.

Roy, C. K., J. R. Cordy and R. Koschke (May 2009). “Comparison and Evaluation of
Code Clone Detection Techniques and Tools: A Qualitative Approach”. In: Science of
Computer Programming 74.7, pp. 470–495. issn: 0167‐6423. doi: 10.1016/j.scico.
2009.02.007.

Sağlam, T. (2025).Mitigating Automated Obfuscation Attacks on Software Plagiarism De‐
tection Systems. https://publikationen.bibliothek.kit.edu/1000179018. doi: 10.5445/
IR/1000179018.

Sağlam, T., M. Brödel, L. Schmid and S. Hahner (Apr. 2024). “Detecting Automatic Soft‐
ware Plagiarism via Token Sequence Normalization”. In: Proceedings of the IEEE/ACM
46th International Conference on Software Engineering. ICSE ʼ24. New York, NY, USA:
Association for Computing Machinery, pp. 1–13. isbn: 979‐8‐4007‐0217‐4. doi: 10.
1145/3597503.3639192.

Sağlam, T., S. Hahner, L. Schmid and E. Burger (May 2024). “Obfuscation‐Resilient
Software Plagiarism Detection with JPlag”. In: Proceedings of the 2024 IEEE/ACM
46th International Conference on Software Engineering: Companion Proceedings. ICSE‐
Companion ʼ24. New York, NY, USA: Association for Computing Machinery, pp. 264–
265. isbn: 979‐8‐4007‐0502‐1. doi: 10.1145/3639478.3643074.

Schleimer, S., D. S. Wilkerson and A. Aiken (June 2003). “Winnowing: Local Algorithms
for Document Fingerprinting”. In: Proceedings of the 2003 ACM SIGMOD International

192

https://doi.org/10.1145/3689187.3709614
https://doi.org/10.1145/3632620.3671116
https://doi.org/10.3217/jucs-008-11-1016
https://doi.org/10.1002/j.2168-9830.2004.tb00809.x
https://doi.org/10.1002/j.2168-9830.2004.tb00809.x
https://doi.org/10.48550/arXiv.2403.04811
https://arxiv.org/abs/2403.04811
https://doi.org/10.1109/FIE.2002.1158209
https://doi.org/10.1109/FIE.2002.1158209
https://doi.org/10.1080/08993401003612167
https://doi.org/10.1080/08993401003612167
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1016/j.scico.2009.02.007
https://doi.org/10.1016/j.scico.2009.02.007
https://doi.org/10.5445/IR/1000179018
https://doi.org/10.5445/IR/1000179018
https://doi.org/10.1145/3597503.3639192
https://doi.org/10.1145/3597503.3639192
https://doi.org/10.1145/3639478.3643074

Conference on Management of Data. SIGMOD ʼ03. New York, NY, USA: Association for
Computing Machinery, pp. 76–85. isbn: 978‐1‐58113‐634‐0. doi: 10.1145/872757.
872770.

Schneier, B. (Oct. 1995). Applied Cryptography (2nd Edition): Protocols, Algorithms, and
Source Code in C. USA: JohnWiley & Sons, Inc. isbn: 978‐0‐471‐11709‐4.

Schrepp, M., A. Hinderks and J. Thomaschewski (2017). “Construction of a Benchmark
for the User Experience Questionnaire (UEQ)”. In: International Journal of Interactive
Multimedia and Artificial Intelligence 4.4, pp. 40–44. issn: 1989‐1660. doi: 10.25968/
opus-3397.

Sheahen, D. and D. Joyner (Apr. 2016). “TAPS: AMOSS Extension for Detecting Software
Plagiarism at Scale”. In: Proceedings of the Third (2016) ACM Conference on Learning @
Scale. L@S ʼ16. New York, NY, USA: Association for Computing Machinery, pp. 285–
288. isbn: 978‐1‐4503‐3726‐7. doi: 10.1145/2876034.2893435.

Sheard, J., A. Carbone andM. Dick (Jan. 2003). “Determination of FactorsWhich Impact
on IT Studentsʼ Propensity to Cheat”. In: Proceedings of the Fifth Australasian Conference
on Computing Education ‐ Volume 20. Vol. 20. ACE ʼ03. AUS: Australian Computer
Society, Inc., pp. 119–126. isbn: 978‐0‐909925‐98‐7.

Sheard, J. and M. Dick (June 2011). “Computing Student Practices of Cheating and
Plagiarism: A Decade of Change”. In: Proceedings of the 16th Annual Joint Conference
on Innovation and Technology in Computer Science Education. ITiCSE ʼ11. NewYork, NY,
USA: Association for Computing Machinery, pp. 233–237. isbn: 978‐1‐4503‐0697‐3.
doi: 10.1145/1999747.1999813.

Sheard, J. and M. Dick (Jan. 2012). “Directions and Dimensions in Managing Cheating
andPlagiarismof ITStudents”. In: Proceedings of the FourteenthAustralasian Computing
Education Conference ‐ Volume 123. ACE ʼ12. AUS: Australian Computer Society, Inc.,
pp. 177–186. isbn: 978‐1‐921770‐04‐3.

Sheard, J., M. Dick, S. Markham, I. Macdonald and M.Walsh (June 2002). “Cheating
and Plagiarism: Perceptions and Practices of First Year IT Students”. In: ACM SIGCSE
Bulletin 34.3, pp. 183–187. issn: 0097‐8418. doi: 10.1145/637610.544468.

Sheard, J., Simon, M. Butler, K. Falkner, M. Morgan and A.Weerasinghe (June 2017).
“Strategies for Maintaining Academic Integrity in First‐Year Computing Courses”.
In: Proceedings of the 2017 ACM Conference on Innovation and Technology in Computer
Science Education. Bologna Italy: ACM, pp. 244–249. isbn: 978‐1‐4503‐4704‐4. doi:
10.1145/3059009.3059064.

Shumailov, I., Z. Shumaylov,Y. Zhao, N. Papernot, R. Anderson andY. Gal (July 2024). “AI
Models CollapseWhen Trained on Recursively Generated Data”. In: Nature 631.8022,
pp. 755–759. issn: 1476‐4687. doi: 10.1038/s41586-024-07566-y.

Simões, A. and R. Queirós (2020). “On the Nature of Programming Exercises”. In: First
International Computer Programming Education Conference (ICPEC 2020). Ed. by R.
Queirós, F. Portela,M. Pinto andA. Simões.Vol. 81. OpenAccess Series in Informatics
(OASIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz‐Zentrum für Informatik,
24:1–24:9. isbn: 978‐3‐95977‐153‐5. doi: 10.4230/OASIcs.ICPEC.2020.24.

Simon (Jan. 2017). “Designing Programming Assignments to Reduce the Likelihood of
Cheating”. In: Proceedings of the Nineteenth Australasian Computing Education Confer‐
ence. ACE ʼ17. New York, NY, USA: Association for Computing Machinery, pp. 42–47.
isbn: 978‐1‐4503‐4823‐2. doi: 10.1145/3013499.3013507.

193

https://doi.org/10.1145/872757.872770
https://doi.org/10.1145/872757.872770
https://doi.org/10.25968/opus-3397
https://doi.org/10.25968/opus-3397
https://doi.org/10.1145/2876034.2893435
https://doi.org/10.1145/1999747.1999813
https://doi.org/10.1145/637610.544468
https://doi.org/10.1145/3059009.3059064
https://doi.org/10.1038/s41586-024-07566-y
https://doi.org/10.4230/OASIcs.ICPEC.2020.24
https://doi.org/10.1145/3013499.3013507

Bibliography

Simon, B. Cook, J. Sheard, A. Carbone and C. Johnson (Nov. 2013). “Academic Integrity:
Differences between Computing Assessments and Essays”. In: Proceedings of the 13th
Koli Calling International Conference on Computing Education Research. Koli Calling
ʼ13. New York, NY, USA: Association for Computing Machinery, pp. 23–32. isbn:
978‐1‐4503‐2482‐3. doi: 10.1145/2526968.2526971.

Simon, B. Cook, J. Sheard, A. Carbone and C. Johnson (June 2014). “Student Perceptions
of the Acceptability of Various Code‐Writing Practices”. In: Proceedings of the 2014
Conference on Innovation & Technology in Computer Science Education. ITiCSE ʼ14. New
York, NY, USA: Association for Computing Machinery, pp. 105–110. isbn: 978‐1‐4503‐
2833‐3. doi: 10.1145/2591708.2591755.

Simon and J. Sheard (Feb. 2016). “Academic Integrity and Computing Assessments”. In:
Proceedings of the Australasian Computer Science Week Multiconference. ACSW ʼ16. New
York, NY, USA: Association for Computing Machinery, pp. 1–8. isbn: 978‐1‐4503‐4042‐
7. doi: 10.1145/2843043.2843060.

Simon, J. Sheard, M. Morgan, A. Petersen, A. Settle, J. Sinclair, G. Cross and C. Riedesel
(July 2016). “Negotiating the Maze of Academic Integrity in Computing Education”.
In: Proceedings of the 2016 ITiCSE Working Group Reports. ITiCSE ʼ16. New York, NY,
USA: Association for Computing Machinery, pp. 57–80. isbn: 978‐1‐4503‐4882‐9. doi:
10.1145/3024906.3024910.

Slobodkin, E. and A. Sadovnikov (Mar. 2023). Towards a Dataset of Programming Contest
Plagiarism in Java. doi: 10.48550/arXiv.2303.10763. arXiv: 2303.10763 [cs].

Stack Overflow (May 2024). 2024 Stack Overflow Developer Survey. https://survey.stack‐
overflow.co/2024/technology/.

Strijbol, N., C. Van Petegem, R. Maertens, B. Sels, C. Scholliers, P. Dawyndt and B.
Mesuere (May 2023). “TESTed—An Educational Testing Framework with Language‐
Agnostic Test Suites for Programming Exercises”. In: SoftwareX 22, p. 101404. issn:
2352‐7110. doi: 10.1016/j.softx.2023.101404.

Strozanski, P. (Nov. 2024). “Anti‐Cheat for ProgrammingCourses:DetectingAI‐Generated
Source Code”. MA thesis. Aalto University School of Science.

Svetkin, A. (May 2024). Testing LLMs on Solving Leetcode Problems | HackerNoon.
Tahaei, N. and D. C. Noelle (Aug. 2018). “Automated Plagiarism Detection for Computer

Programming Exercises Based on Patterns of Resubmission”. In: Proceedings of the
2018 ACM Conference on International Computing Education Research. ICER ʼ18. New
York, NY, USA: Association for Computing Machinery, pp. 178–186. isbn: 978‐1‐4503‐
5628‐2. doi: 10.1145/3230977.3231006.

Tomita, M. (Aug. 1985). “An Efficient Context‐Free Parsing Algorithm for Natural Lan‐
guages”. In: Proceedings of the 9th International Joint Conference on Artificial Intelligence
‐ Volume 2. IJCAIʼ85. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
pp. 756–764. isbn: 978‐0‐934613‐02‐6.

Ukkonen, E. (Sept. 1995). “On‐Line Construction of Suffix Trees”. In: Algorithmica 14.3,
pp. 249–260. issn: 1432‐0541. doi: 10.1007/BF01206331.

Valiente, G. (2021). “Tree Isomorphism”. In: Algorithms on Trees and Graphs: With Python
Code. Ed. by G. Valiente. Cham: Springer International Publishing, pp. 113–180. isbn:
978‐3‐030‐81885‐2. doi: 10.1007/978-3-030-81885-2_4.

Van der Jeugt, F., R. Maertens, A. Steyaert, P. Verschaffelt, C. De Tender, P. Dawyndt and
B. Mesuere (June 2022). “UMGAP: The Unipept MetaGenomics Analysis Pipeline”. In:
BMC Genomics 23.1, p. 433. issn: 1471‐2164. doi: 10.1186/s12864-022-08542-4.

194

https://doi.org/10.1145/2526968.2526971
https://doi.org/10.1145/2591708.2591755
https://doi.org/10.1145/2843043.2843060
https://doi.org/10.1145/3024906.3024910
https://doi.org/10.48550/arXiv.2303.10763
https://arxiv.org/abs/2303.10763
https://doi.org/10.1016/j.softx.2023.101404
https://doi.org/10.1145/3230977.3231006
https://doi.org/10.1007/BF01206331
https://doi.org/10.1007/978-3-030-81885-2_4
https://doi.org/10.1186/s12864-022-08542-4

Van Petegem, C., P. Dawyndt and B. Mesuere (June 2023). “Dodona: Learn to Code
with a Virtual Co‐teacher That Supports Active Learning”. In: Proceedings of the 2023
Conference on Innovation and Technology in Computer Science Education V. 2. ITiCSE
2023. New York, NY, USA: Association for Computing Machinery, p. 633. isbn: 979‐8‐
4007‐0139‐9. doi: 10.1145/3587103.3594165.

Van Petegem, C., L. Deconinck, D. Mourisse, R. Maertens, N. Strijbol, B. Dhoedt, B. De
Wever, P. Dawyndt and B.Mesuere (Mar. 2023). “Pass/Fail Prediction in Programming
Courses”. In: Journal of Educational Computing Research 61.1, pp. 68–95. issn: 0735‐
6331. doi: 10.1177/07356331221085595.

Van Petegem, C., K. Demeyere, R. Maertens, N. Strijbol, B. D.Wever, B. Mesuere and
P. Dawyndt (Apr. 2024).Mining Patterns in Syntax Trees to Automate Code Reviews of
Student Solutions for Programming Exercises. doi: 10.48550/arXiv.2405.01579.
arXiv: 2405.01579 [cs].

Van Petegem, C., R. Maertens, N. Strijbol, J. Van Renterghem, F. Van der Jeugt, B.
DeWever, P. Dawyndt and B. Mesuere (Dec. 2023). “Dodona: Learn to Code with a
Virtual Co‐Teacher That Supports Active Learning”. In: SoftwareX 24, p. 101578. issn:
2352‐7110. doi: 10.1016/j.softx.2023.101578.

Visser, E. (Aug. 1997). Scannerless Generalized‐LR Parsing. Tech. rep. P9707.
Wager, E. (2014). “Defining and Responding to Plagiarism”. In: Learned Publishing 27.1,

pp. 33–42. issn: 1741‐4857. doi: 10.1087/20140105.
Walker, H. M. (Mar. 1997). “Collaborative Learning: A Case Study for CS1 at Grinnell

College and Austin”. In: Proceedings of the Twenty‐Eighth SIGCSE Technical Symposium
on Computer Science Education. SIGCSE ʼ97. New York, NY, USA: Association for Com‐
puting Machinery, pp. 209–213. isbn: 978‐0‐89791‐889‐3. doi: 10.1145/268084.
268164.

Wang, Z., M. Shao, J. Bhandari, L. Mankali, R. Karri, O. Sinanoglu, M. Shafique and
J. Knechtel (Apr. 2025). VeriContaminated: Assessing LLM‐Driven Verilog Coding for
Data Contamination. doi: 10.48550/arXiv.2503.13572. arXiv: 2503.13572
[cs].

Wang, Z., M. Shao, M. Nabeel, P. B. Roy, L. Mankali, J. Bhandari, R. Karri, O. Sinanoglu,
M. Shafique and J. Knechtel (Apr. 2025). VeriLeaky: Navigating IP Protection vs Utility
in Fine‐Tuning for LLM‐Driven Verilog Coding. doi: 10.48550/arXiv.2503.13116.
arXiv: 2503.13116 [cs].

Watters, A. (Mar. 2025).The PlagiarismMachine. https://2ndbreakfast.audreywatters.com/the‐
plagiarism‐machine/.

Weber‐Wulff, D. (Mar. 2019). “Plagiarism Detectors Are a Crutch, and a Problem”. In:
Nature 567.7749, pp. 435–435. doi: 10.1038/d41586-019-00893-5.

Williams, L., C.McDowell, N. Nagappan, J. Fernald and L.Werner (Sept. 2003). “Building
Pair Programming Knowledge through a Family of Experiments”. In: 2003 Interna‐
tional Symposium on Empirical Software Engineering, 2003. ISESE 2003. Proceedings.
Pp. 143–152. doi: 10.1109/ISESE.2003.1237973.

Wise, M. J. (Dec. 1993). String Similarity via Greedy String Tiling and Running Karp‐
Rabin Matching. Tech. rep. Australia: Department of Computer Science, University
of Sydney.

Xu, D. and Y. Tian (June 2015). “A Comprehensive Survey of Clustering Algorithms”. In:
Annals of Data Science 2.2, pp. 165–193. issn: 2198‐5812. doi: 10.1007/s40745-015-
0040-1.

195

https://doi.org/10.1145/3587103.3594165
https://doi.org/10.1177/07356331221085595
https://doi.org/10.48550/arXiv.2405.01579
https://arxiv.org/abs/2405.01579
https://doi.org/10.1016/j.softx.2023.101578
https://doi.org/10.1087/20140105
https://doi.org/10.1145/268084.268164
https://doi.org/10.1145/268084.268164
https://doi.org/10.48550/arXiv.2503.13572
https://arxiv.org/abs/2503.13572
https://arxiv.org/abs/2503.13572
https://doi.org/10.48550/arXiv.2503.13116
https://arxiv.org/abs/2503.13116
https://doi.org/10.1038/d41586-019-00893-5
https://doi.org/10.1109/ISESE.2003.1237973
https://doi.org/10.1007/s40745-015-0040-1
https://doi.org/10.1007/s40745-015-0040-1

Bibliography

Xu, Z. and V. S. Sheng (Mar. 2024). “Detecting AI‐Generated Code Assignments Using
Perplexity of Large Language Models”. In: Proceedings of the AAAI Conference on
Artificial Intelligence 38.21, pp. 23155–23162. issn: 2374‐3468. doi: 10.1609/aaai.
v38i21.30361.

Yu, H., B. Shen, D. Ran, J. Zhang, Q. Zhang, Y. Ma, G. Liang, Y. Li, Q.Wang and T. Xie
(Feb. 2024). “CoderEval: A Benchmark of Pragmatic Code Generationwith Generative
Pre‐trained Models”. In: Proceedings of the IEEE/ACM 46th International Conference
on Software Engineering. ICSE ʼ24. New York, NY, USA: Association for Computing
Machinery, pp. 1–12. isbn: 979‐8‐4007‐0217‐4. doi: 10.1145/3597503.3623316.

Yu, Z., Y.Wu, N. Zhang, C.Wang, Y.Vorobeychik and C. Xiao (July 2023). “CodeIPPrompt:
Intellectual Property Infringement Assessment of Code Language Models”. In: Pro‐
ceedings of the 40th International Conference on Machine Learning. PMLR, pp. 40373–
40389.

Zhao, J., K. Xia, Y. Fu and B. Cui (Nov. 2015). “An AST‐based Code Plagiarism Detection
Algorithm”. In: 2015 10th International Conference on Broadband and Wireless Comput‐
ing, Communication and Applications (BWCCA), pp. 178–182. doi: 10.1109/BWCCA.
2015.52.

Zhou, L., W. Schellaert, F. Martínez‐Plumed, Y. Moros‐Daval, C. Ferri and J. Hernández‐
Orallo (Oct. 2024). “Larger and More Instructable Language Models Become Less
Reliable”. In: Nature 634.8032, pp. 61–68. issn: 1476‐4687. doi: 10.1038/s41586-
024-07930-y.

196

https://doi.org/10.1609/aaai.v38i21.30361
https://doi.org/10.1609/aaai.v38i21.30361
https://doi.org/10.1145/3597503.3623316
https://doi.org/10.1109/BWCCA.2015.52
https://doi.org/10.1109/BWCCA.2015.52
https://doi.org/10.1038/s41586-024-07930-y
https://doi.org/10.1038/s41586-024-07930-y

	Samenvatting
	Summary
	Dankwoord — Acknowledgements
	Table of contents
	List of acronyms
	List of publications
	Educational source code plagiarism
	Educational Setting
	Formative and summative assessment
	Programming exercise platforms
	Cheating

	Source code plagiarism
	Prevalence of source code plagiarism
	When does plagiarism occur in programming assignments?

	How students plagiarise
	Sources for plagiarism
	Obfuscations: how students evade detection

	Countermeasures
	Plagiarism detection using Source Code Similarity

	Goal and structure of this dissertation
	Research goal
	Structure of this dissertation

	Related work
	Detecting plagiarism
	Plagiarism detection fundamentals
	Similarity detection algorithms
	Greedy String Tiling
	Winnowing

	Source code similarity detection tools
	Moss
	JPLag
	Plaggie
	Sherlock Warwick
	Sherlock Sydney
	Compare50

	Algorithmic underpinnings
	Tokenisation
	Parsing to a syntax tree
	Serialisation and location mapping
	Removing comment tokens

	Fingerprinting
	Hashing tokens
	Hashing k-grams
	Winnowing
	Building the fingerprint index

	Reporting
	Comparing pairs
	Computing similarity
	Computing the Longest Common Substring
	Delayed calculation of fragments

	User Interface and User Experience design
	Design methodology
	Usability Testing
	Philosophy

	General UI structure
	Navigation
	Metadata
	Global settings

	Overview
	Similarity Histogram
	Automatic similarity threshold estimation

	Plagiarism Graph
	Clusters
	Cluster detail

	Pairs
	Pairwise comparison

	Submissions
	Submission detail

	Evolution of the UI
	TUI before v1.0.0
	v1.0.0 – A web UI for Dolos
	v1.6.0 – Clusters and files
	v2.0.0 – Major UI redesign
	Further development

	Implementation
	Software architecture
	Choice for TypeScript
	Repository structure
	Continuous Integration and Deployment
	Software Licence

	Parser module
	Vendoring parsers

	Software libraries
	dolos-core
	dolos-lib

	Command-line interface
	CSV-format
	Launching the Web UI

	Web interface
	Vue philosophy
	Report ingestion and initialisation
	D3 Visualisations
	The Monaco editor
	Server mode

	API server
	API submission flow
	External integrations

	Additional components
	Documentation
	Samples
	Containers
	Nix flake

	Evaluation
	Usage metrics
	Benchmarks
	Datasets
	Method
	Results

	Usability and User Experience
	User Experience Questionnaire
	Methodology
	Results
	Limitations

	Case study
	Course structure
	Plagiarism prevention
	Impact of COVID-19 pandemic
	Impact of GenAI

	Experimental prototypes
	Evaluation
	Challenges
	Dataset annotation and benchmark standardisation
	Simulated plagiarism dataset
	Lessons learned

	Matching algorithms
	Tree-matching
	Syntax tree preprocessing
	Suffix trees
	Lessons learned

	Visualisations
	Interestingness metric
	Semantic analysis
	Lessons learned

	Conclusions
	Results
	Research contributions

	Impact
	Plagiarism detection in education contexts
	Detecting plagiarism by LLMs
	Malware classification

	Future work
	Multi-file and multi-submission analysis
	Improving the similarity threshold estimate
	Supporting instructors to report plagiarism

	Generative AI
	Concluding remarks

	Dolos CLI commands and options
	dolos command-line options
	dolos serve command-line options
	dolos run command-line options

	Bibliography

